Blockchain Models and Benchmarks

Blockchain from a Performance Engineering Perspective

<u>Aad van Moorsel, Amjad Aldweesh</u> <u>Maher Alharby, Paul Ezhilchelvan</u>

Newcastle University, UK

Copyrights of graphics is with the sources given with each graphic. General copyright notice on each slide concerns all other materials.

Outline

- Blockchain explained
- Bitcoin
- Ethereum
- Three Performance Layers in Blockchain
 - Processing layer
 - Connector layer
 - Incentives layer

Benchmarks and models in these three layers

Conclusion and Outlook

FinTech Research @ Newcastle

http://www.ncl.ac.uk/computing/research/groups/srs/#staff

Interfacing effectively with mobile users



Academic Centre of Excellence in Cyber Security Research Securing tomorrow's payment systems

© Aad van Moorsel, Newcastle University, 2018

Blockchain as disruptive technology

Blockchain Research @ Newcastle

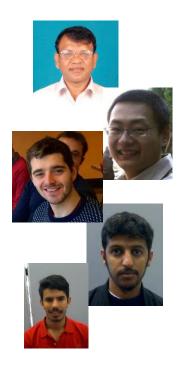
Interfacing effectively with mobile users

Securing tomorrow's payment systems

Blockchain as disruptive technology

EPSRC

Academic Centre of Excellence


in Cyber Security Research

Security Centre

Number of uses of blockchain smart contracts:

- Changyu Dong, et al., "Betrayal, trust and rationality: Smart counter-collusion contracts for verifiable cloud computing", CCS 2017
- Paul Ezhilchelvan, et al., "Non-blocking two phase ٠ **commit** using blockchain", MobiSys CryBlock, 2018 (submitted)
- Patrick McCorry et al., "A smart contract for boardroom ٠ voting with maximum voter privacy", Financial Crypto, 2017

Blockchain Research @ Newcastle

Interfacing effectively with mobile users Securing tomorrow's payment systems Blockchain as disruptive technology

Amjad Aldweesh:

- "A survey about blockchain software architectures", UKPEW 2017
 Maher Alharby:
- "<u>Blockchain-based Smart Contracts: A</u> <u>Systematic Mapping Study</u>", Computer Science and Information Technology, UAE, 2017
- "The impact of profit uncertainty on miner decisions in blockchain systems", UKPEW, extended in Electronic Notes in Theoretical Computer Science, 2017 £360K Project with Atom Bank: automated services for secured lending with blockchain as integration platform

Academic Centre of Excellence in Cyber Security Research

Security Centre

Blockchain Models & Benchmarks

Blockchain explained

© Aad van Moorsel, Newcastle University, 2018

Blockchain explained (1)

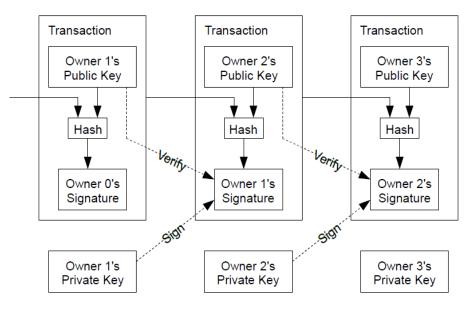
blockchain is a ledger

TERMS. RATING CREDIT	LIMIT.		NAME Addre	W.	a. Broot	es.	
DATE 1915	ITEMS	Folio 1	DEBITS	DATE	ITEMS	Folio √	CREDITS
	Cash from E.H.all		15\$70	Mor 13	ITEMS Sal.	Ті	5975 27245
	Bal. Gash from Payroll		27245	20	Inaft to Barles Bal.		33220
	Bal. Costo from Poynde		42665		Draft to Barten		42665 15435 21175
27 Rec 14 14	Bal. Sind from logot " Syle Bye	1 T.F "		Dec 4	Araft to Barten	574	36610 14620 28190
	Bal. Gash from Poyrold		25- 36310 21690 11670	n	Droft to Barten	75	36310
	Bal. Jash from Eight		33360	18	Draft to Parten	76	33360
			25-		Draft to Parten Sail advanced over Pal	the second se	3160 +8075 23340
25	Bal. Jack from togot	4	8.075	250	Droft & Barten Bat		18430

Picture from PBS, copyright unkown

Blockchain explained (2)

blockchain stores only digital elements

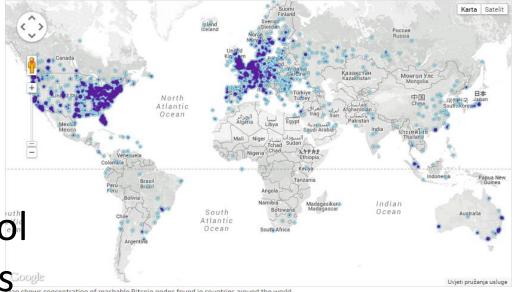

- Sign with private key: clear ownership
- Verify with public key: find out overspend
- Unmutable, uncopyable
- Coin as unit/currency

National Cyber

Academic Centre of Excellence

in Cyber Security Research

EPSR

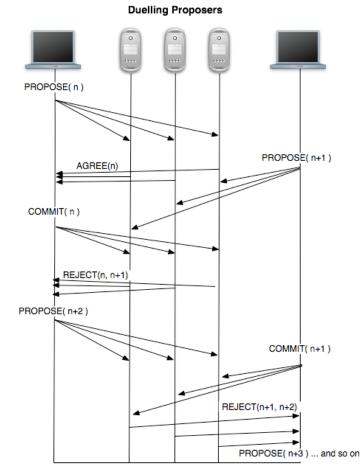

From Nakamoto 2008

Blockchain explained (3)

blockchain ledger is **distributed**

- Each miner keeps a copy of the ledger
- Peer-to-peer protocol to distribute updates

From Coindesk.com

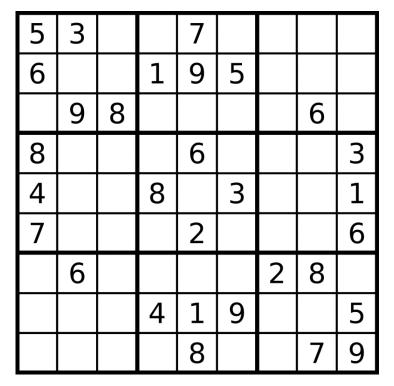


Blockchain explained (4)

Because blockchain is **distributed,** miners need to reach **consensus** about all updates and verify them:

 a consensus algorithm needed

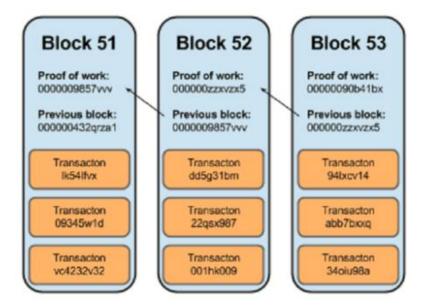
From inerciatech.com



Blockchain explained (5)

Everyone must be able join the blockchain, how can we trust them?

- Proof of Work
 - Need to invest (CPU cycles), for a reward, so you gain a stake in the blockchain
 - Introduces a competition, that no single party can always win

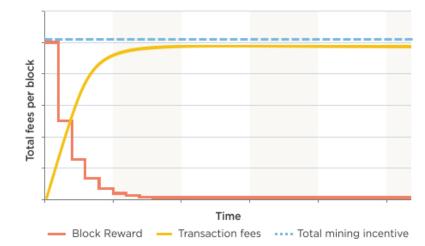

From wikimedia.org

Blockchain explained (6)

Since there will be many transactions, we cannot carry out Proof of Work for every transaction:

- Group transactions in a block
- Miner that wins PoW send block around to update the ledger

From <u>www.processexcellencenetwork.com</u>


Blockchain explained (7)

Miner gets reward:

- For PoW: **Block reward**
- Transaction rewards

Reward is proportional to CPU power invested

TRANSACTION FEES ARE MEANT TO REPLACE BLOCK REWARDS

From bitsonblocks.files.wordpress.com

Blockchain explained (8)

Can you get bogus transactions accepted?

- Work with a few friends
- Try to win PoW for a block with bogus Tx
- But you need to win N times to get it accepted throughout the network
- And no good guy must have verified and found the bogus Tx

Not practically feasible, as long as 51% CPU power is honest

National Cybe

Academic Centre of Excellence

in Cyber Security Research

RATING			ADDDD	yy .	a. Broot	60.	
CREDIT	LIMIT.	all and a	ADDRE	.88			
	ITEMS	Folio 🖌	DEBITS	DATE	ITEMS	Folio V	CREDITS
nor in	Cash from E.H.all	2)					5975
13	Cash from E.H.all " Payroll	ì,	173.50	12	Sal.		27245
-	and the Charles States and		33220				33220
13	Bal. Grad from Payroll		2724.5	20	Uraly to B. J.	112	16065
70	Each from Payroll	Tr	15420	20	Draft to Barle Barle		266
		1	42665	1. 10 1.1			.42665
20	Bal. Const from Popul		26600	27	Draft to Barten	513	15435
27	Cash from Payne	P 13	10010	27	Rraft to Borten		21175
		1	36610				36610
27	Bal.		21175	Dec 4	Araft to Barten	54	14620
dec it	Cash from Page	ett	126305	14	Bad.		21190
H	Bal. Sash from Payso " Syledy		25-				
		the second second	36310				36310
Dec 4	Bal. Çash from Payrol		21690	n	Draft to Barten	7.5	12520
11	Cash from Payrol	1-15	11670		U		20840
		and the second second	33360			100 100	33360
11	Pal. Sash from Eight		20840	18	Draft to Parten Galadya ye down Bal	16	12105
18	Jash from Eagle	aye' 6	25-	18	Sask advanced over	16	3160
				18	Bal Jugice.		18075
	20		23340				23340
18	Baf. Jakfrom Toget	X	8.075	25	Droft Barten	TAL AN	18430
25	Jash from tagel	9	5600		Bat		22 45

Picture from PBS, copyright unkown

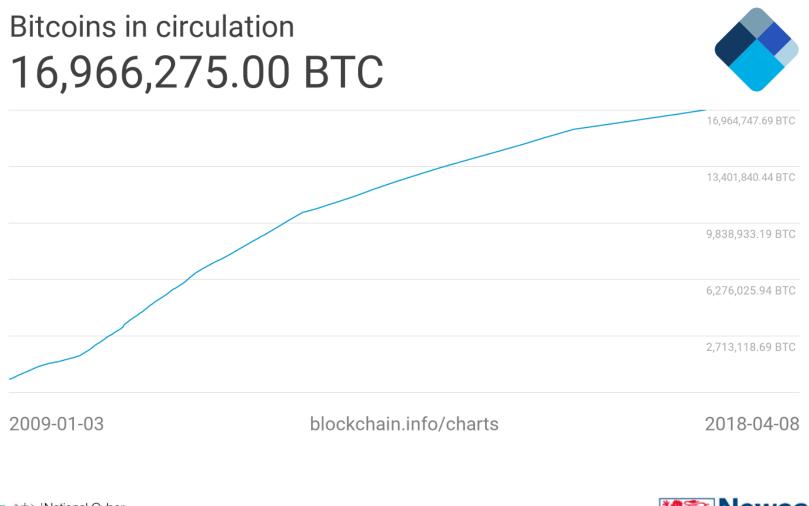
Blockchain Models & Benchmarks

Bitcoin

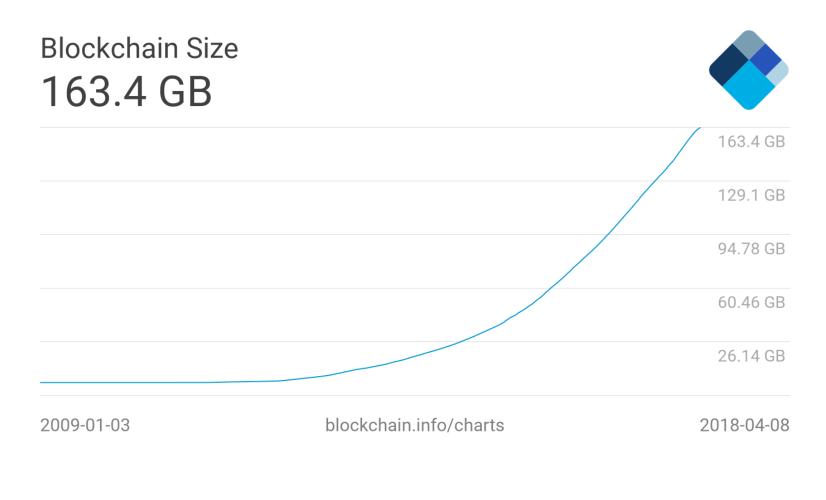
© Aad van Moorsel, Newcastle University, 2018

Bitcoin

Satoshi Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System", Oct 2008.


Software released Jan 2009.

- New coins with every generated block
- Block reward halved every 4 years
- Block every 10 minutes
- In 100 years: 21 million coins


Bitcoins in circulation

Bitcoin blockchain size

Bitcoin value

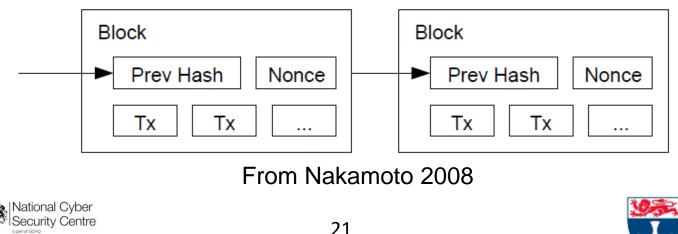
Market Price (USD) \$5,998.86 \$15,763.80 \$12,541.37 \$9,318.93 \$6,096.49 \$2,874.06 2016-04-10 blockchain.info/charts 2018-04-08 National Cyber **EPSRC** Security Centre

Academic Centre of Excellence in Cyber Security Research

Bitcoin electricity usage

Description	Value
Bitcoin's annual electricity consumption* (TWh)	59.87
Annualized global mining revenues	\$5,510,539,006
Annualized estimated global mining costs	\$2,993,259,080
Current cost percentage	54.32%
Country closest in terms of electricity consumption	Colombia
Estimated electricity used over previous day (KWh)	164,014,196
Electricity consumed per transaction (KWh)	952
U.S. households that could be powered by Bitcoin	5,543,072
U.S. households powered for 1 day for a single transaction	32.18
Bitcoin as a percentage of the world's electricity consumption	0.27%
Annual carbon footprint (kt of CO2)	29,334
Carbon footprint per transaction (kg of CO2)	466.53

From https://digiconomist.net/bitcoin-energy-consumption, April 2018



Performance currently dominated by Proof of Work

- PoW: 'endlessly' try nonces until the hash of block satisfies a certain condition (eg, starting with at least 32 zeros) → first to do that gets block award
- Performance measured in hash/sec and hash/sec/\$
- Energy use measured in hash/Joules

Academic Centre of Excellence

in Cyber Security Research

Benchmark: Bitcoin hardware

2008: mine with CPU

- 2010: mine with GPU
- GPUs do less than 1GHash per second, ASICs > 1000 times more
- GPU data still available at bitcoin wiki, best performance: 3MHash/J, 2500 MHash/s, 4 MHash/s/\$
- 2011: mine with ASICs
 - Ebit E10: 18000 GHash/s, 11 GHash/J (China only)
 - Ebit E9++: 6 GHash/s/\$ (China only)

Bitcoin PoW hash ASIC

	Bitcoin double ShA250 ASIC mining hardware								
Product +	Advertised Mhash/s +	Mhash/J ≑	Mhash/s/\$ 🕈	Watts 🕈	Price (USD) \$	Currently shipping -			
Ebit E9+ ^[23]	9,000,000	6900	6428	1300	1400	Yes			
AntMiner S9 ^[9]	14,000,000	10182	5833	1,375	2,400	Yes			
Avalon741	7,300,000	6350	5035	1150	1450	Yes			
Avalon761	8,800,000	6670	4730	1320	1860	Yes			
Ebit E9 ^[22]	6,300,000	7140	4468	882	1410	No			
Avalon821	11,000,000	9170	3800	1200	2900	Bulk only			
Ebit E9++ ^[24]	14,000,000	10500	3600	1330	3880	Yes			
Ebit E10 ^[25]	18,000,000	11100	3440	1620	5230	Yes			
AntMiner S5+ [7]	7,722,000	2247	3347	3,436	2,307	No			
AntMiner S5 [6]	1,155,000	1957	3121	590	370	Discontinued			
AntMiner S7 [8]	4,860,000	4000	2666	1,210	1,823	No			

Bitcoin double SHA256 ASIC mining hardware

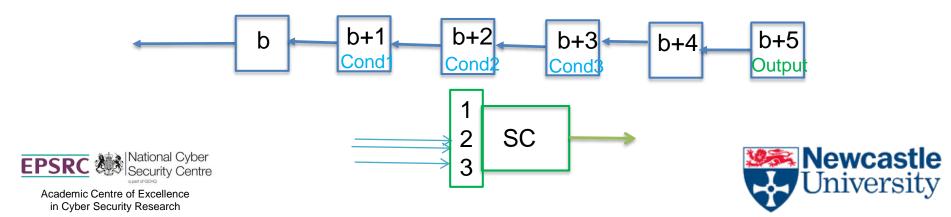
From: https://en.bitcoin.it/wiki/Mining_hardware_comparison

Blockchain Models & Benchmarks

Ethereum

Ethereum philosophy

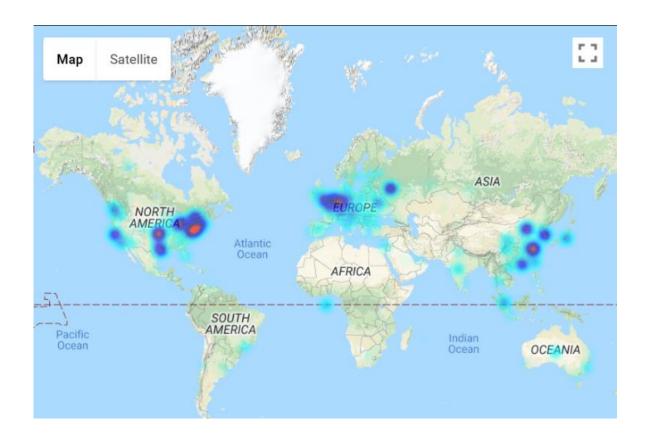
General cryptocurrency platform for a large set of distributed applications, with as design goals:


- As simple as possible for programmer
- Universal through Turing complete smart contracts
- Modular
- Agile (nothing cast in stone)
- Non-discrimination / non-censorship

Ethereum Smart Contracts

- Turing complete programs
- Smart contracts can call smart contracts
- Executed when specified conditions are satisfied in blockchain, e.g., monthly payment
- Execution output made available in blockchain, e.g. mortgage agreement
- Transaction fee for miner based on 'gas' used

Ethereum Smart Contracts


Many exciting applications thought off:

- Monthly recurring payments ('direct debits')
- Payment for parcel at delivery triggered by IoT sensors
- The process of mortgaging governed through smart contracts
- Etc...
- We did: 2 Phase Commit, game-theoretic contracts for verified cloud computing, e-voting

Ethereum

From: https://www.ethernodes.org/network/1

Ethereum performance

- Miners are interested in surplus: block/transaction award – energy cost
- Computational effort currently dominated by PoW, but:
 - memory-bound, so ASIC for hashing not effective
- Ethereum will move from PoW to Proof of Stake:
 - Transaction execution performance more important
 - Smart contract execution needs to be optimized and benchmarked

Ethereum benchmarks

Monitoring information on web sites

Fairly little benchmarking activity:

- Ethereum clients (with Ethereum Virtual Machine)
- Smart contract execution time

Benchmark: Ethereum clients

Time it takes to process blocks includes:

- PoW (which is memory-bound: no ASIC, but GPU beats CPU)
- transaction signature checking
- Merkle tree operations, with varying storage options
- EVM code execution
- receipt verification
- uncle validation
- database population

Main parameter:

• Set a database of blocks (eg 1000000 from mainnet chain)

Ethereum Client Benchmarks

	Eth	EthereumJ	Geth	Parity
Time	4h 33m	7h 7m	8h 43m	2h 31m
CPU (avg)	123%	90%	70%	107%
Memory (avg)	921MB	3.168GB	1.5GB	365MB

- From https://github.com/ethereum/wiki/wiki/Benchmarks Spec:
- Digital Ocean 4GB droplet running Ubuntu 14.04.3 x64
- Start-up time for 1 million blocks, verifying them, etc
- Eth \rightarrow C++, EthereumJ \rightarrow Java, Geth \rightarrow Go, Parity \rightarrow Rust

There exist several more clients, no benchmarks known

Smart contracts rewards

- Transaction submitter sets a gas price and a max gas
- System (EVM) counts how much gas is used at smart contract execution
 - for most opcodes, uses a table, per opcode
 - for some opcodes, it uses a formula depending on inputs
- Transaction reward = gas used x gas price
- Miner's transaction cost = energy used

Smart contract rewards

Reasons for rewards (paid by the transaction issuer) are twofold:

- Avoid malicious smart contract to use excessive resources—denial of service attack
- Reward the miners for executing the transactions with smart contracts

For both situations: potential problems if fee paid is not proportional to energy used

Denial of Service Attack on Poorly Benchmarked Smart Contracts

\leftarrow	♦ https://blog.ethereum.org/2 ♀	互 stone	🖲 Newc	O White	O GitHu	O GitHu	🚾 The r	
× Find:	nd: Previous Next 🖉 Options 🔻							
	Uncategorized							

The Ethereum network is currently undergoing a DoS attack

Posted by Jeffrey Wilcke on ② September 22nd, 2016.

URGENT ALL MINERS: The network is under attack. The attack is a computational DDoS, ie. miners and nodes need to spend a very long time processing some blocks. This is due to the EXTCODESIZE opcode, which has a fairly low gasprice but which requires nodes to read state information from disk; the attack transactions are calling this opcode roughly 50,000 times per block. The consequence of this is that the network is greatly slowing down, but there is NO consensus failure or memory overload. We have currently identified several routes for a more sustainable mediumterm fix and have developers working on implementation.

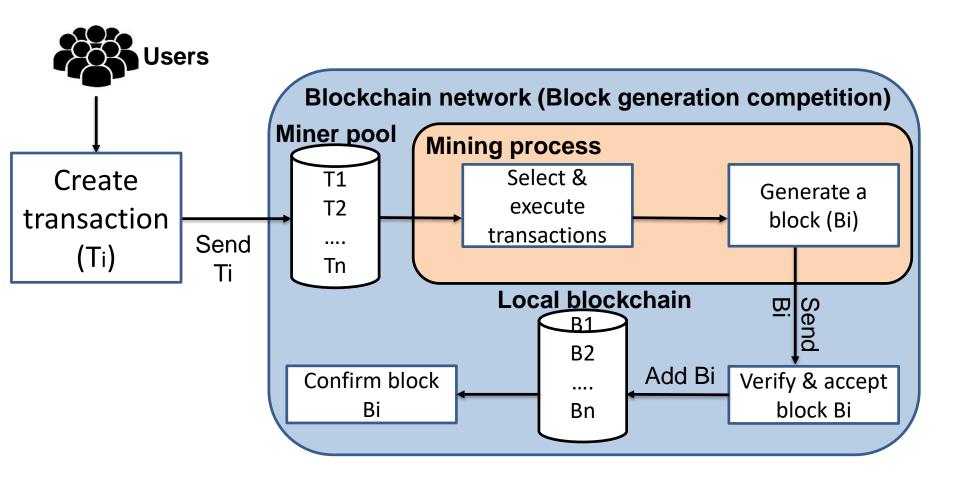
From blog.ethereum.org

📙 Ethereum Blog

35 © Aad van Moorsel, Newcastle University, 2018

What if energy use is not proportional to calculated gas used?

<u>A modelling study</u>


"The impact of profit uncertainty on miner decisions in blockchain systems",

Maher Alharby and Aad van Moorsel

UKPEW 2017, extended in Electronic Notes in Theoretical Computer Science, 2018

Blockchain Workflow

Research Challenges

 Miners know only the maximum income of executing a transaction.

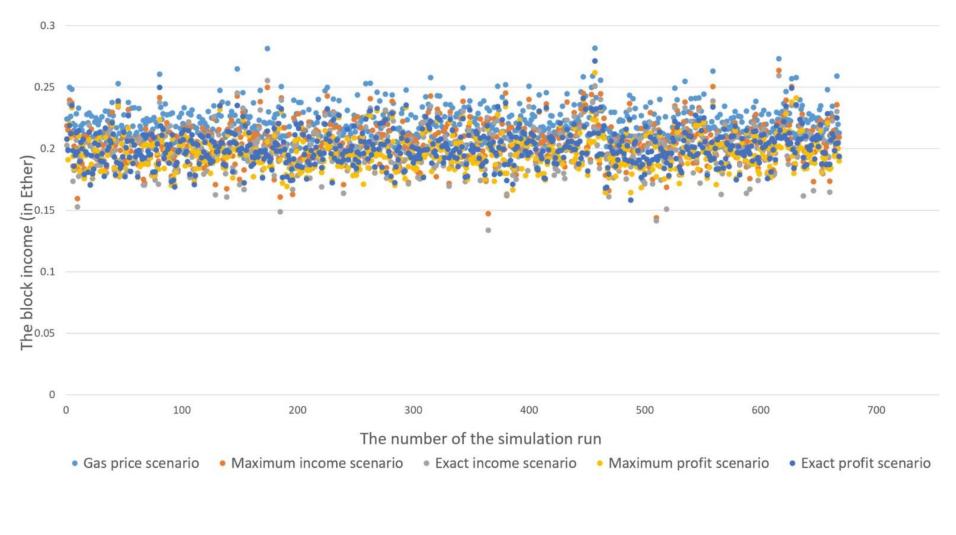
*Maximum income = gas limit * gas price*

- Miners do not know the exact income they can get from executing a transaction.
- Miners do not know the cost of executing a transaction.
- Miners are uncertain about the profit they can get from executing a transaction.

Experimental Design

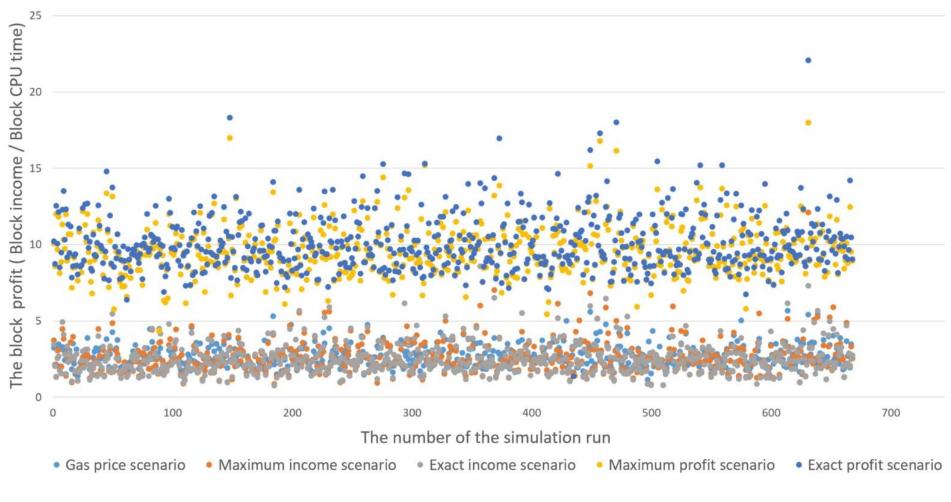
Groups	Scenarios	Available Information	Sorting/Execution Criteria	Income Certainty	Cost Certainty
Baseline	Gas price	Gas limit	Highest gas price	NO	NO
	Maximum income	Gas price	Highest gas limit * gas price	NO	NO
Solution	Exact income	Used gas Gas price	Highest Used gas * gas price	YES	NO
	Maximum profit	Gas limit Gas price CPU time	Highest (gas limit * gas price) / CPU time	NO	YES
	Exact profit	Used gas Gas price CPU time	Highest (used gas * gas price)/ CPU time	YES	YES

Results and Discussion


- **Cost Uncertainty:** The uncertainty miners perceive about the cost of executing transactions has a significant impact on the block profit.
- Certainty about the cost of executing transactions can help miners quadruple their block profit.

Income Uncertainty: The uncertainty miners perceive about the income of executing transactions does not have an impact on the block profit.

Results: Block Income


Results: Block CPU Time

Results: Block Profit

Results

Scenarios	Average Block Income (in Ether)	Average Block CPU time (in Second)	Average Block Profit (Income / CPU time)
Gas price scenario	0.221	0.091	2.604
Maximum income scenario	0.205	0.091	2.538
Exact income scenario	0.199	0.091	2.488
Maximum profit scenario	0.196	0.021	9.538
Exact profit scenario	0.201	0.021	10.070

Table 2

A summary of the experiment's outputs for all the five scenarios. The experiment's outputs are the average block income, the average block CPU time and the average block profit. The average value for each output is taken from 668 simulation runs. The confidence intervals (95%) for the experiment's outputs are not given here, but all intervals are within 3% of the average value.

We used etherscan.io data about gas price, max gas and gas used to parameterize the simulation

Conclusion

- Best strategy: execute the smart contracts that have the best award/CPU ratio
- Uncertainty about the energy use: you cannot choose the best contracts
- Open questions:
- Can we benchmark cost of smart contract and opcode execution?
- Can we build it in the decision maker when choosing transactions?

Blockchain Models & Benchmarks

Ethereum 'used gas' benchmarks

Gas per opcode

Yellow paper defines gas for the 70 (or 117) opcodes (Appendix G), EMV tracks it

- Categories of upcode:
 - base (2 gas), eg, POP, ADDRESS, GASPRICE
 - verylow, (3 gas), eg., AND, OR, ADD
 - low (5 gas), eg., MUL, DIV
 - mid (8 gas), eg., JUMP, ADDMOD
 - high (10 gas), eg JUMPI
- One-offs, eg. BALANCE (400), EXTCODESIZE (700)
- A formula for some, eg. EXP, SHA

Current informal benchmarks for gas per opcode

- No official benchmarks reported
- Interesting, somewhat convoluted approach reported at Github:
 - Cycles/OP as comparable metric
 - No clear isolation of individual opcodes (some stack ops are mixed in)
 - Limited set of opcodes considered
 - For considered opcodes it runs large tests: 320 million test of each operation
 - Clever tests that check that the final result is correct

Ethereum opcode benchmark

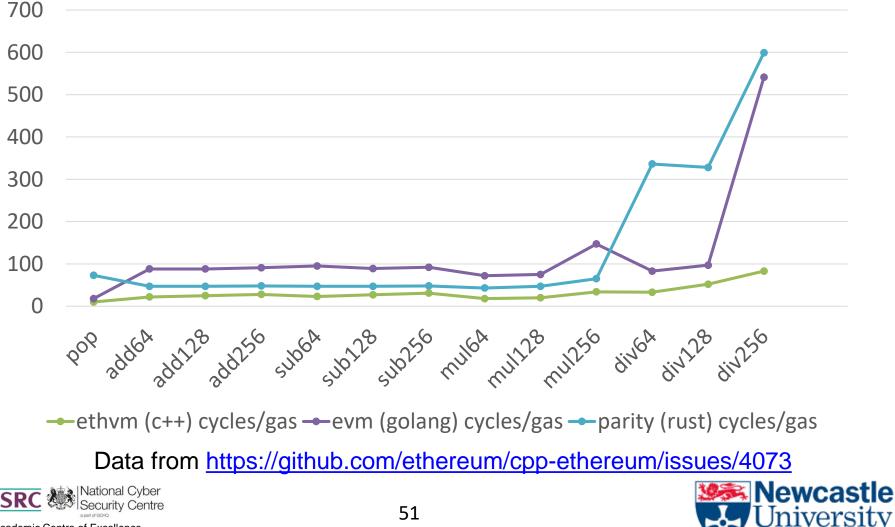
Ethereum 'Performance suite':

https://github.com/ethereum/cpp-

ethereum/tree/develop/test/unittests/performance

- a. *.asm tests for individual opcodes
 - nanoseconds/test; nanoseconds/gas; nanoseconds/opcode
- b. *.sol tests for larger units (PRNG, Encryption)
 Results with only 3 out of 8 existing clients,
 rudimentary tests for limited amount of opcodes

Benchmarks for opcode gas


	ethvm (c++) cycles/gas	evm (go) cycles/gas	parity (rust) cycles/gas
рор	10	18	73
add64	22	88	47
add128	25	88	47
add256	28	91	48
sub64	23	95	47
sub128	27	89	47
sub256	31	92	48
mul64	18	72	43
mul128	20	75	47
mul256	34	147	65
div64	33	83	336
div128	52	97	328
div256	83	541	599

From https://github.com/ethereum/cpp-ethereum/issues/4073

Opcode benchmark: comparison of EVMs (absolute, in cycles)

© Aad van Moorsel, Newcastle University, 2018

Academic Centre of Excellence

in Cyber Security Research

Benchmark for opcode gas

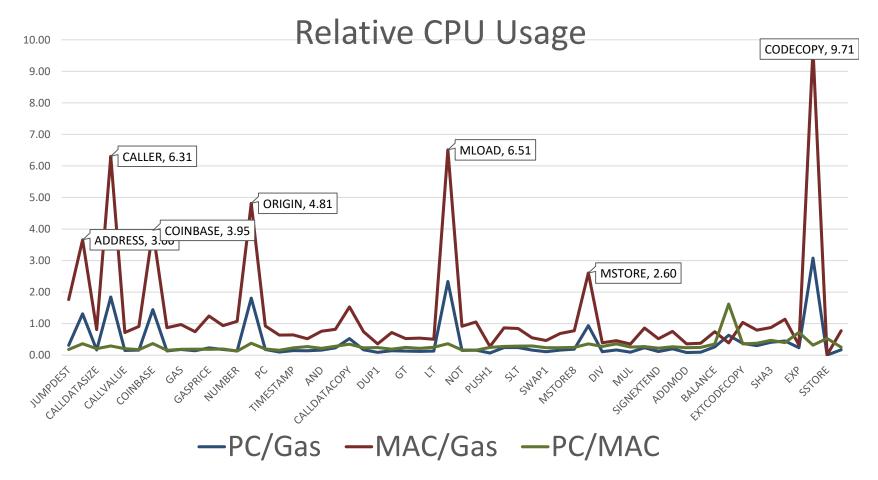
Approach:

- Measure CPU use for the specific opcode only (discount the stack ops)
- Discount startup/shutdown of EVM, discount for-loop, avoid any optimization
- Write the tests that run with a small stack

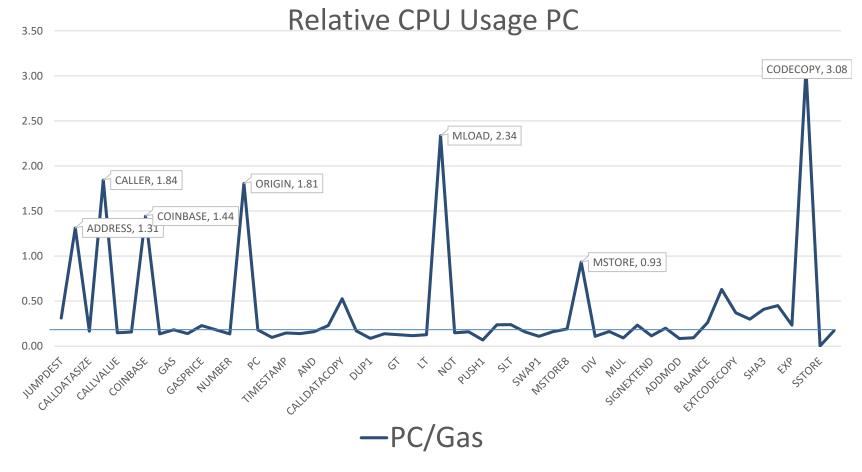
To do:

- Input-dependent benchmark for the opcodes that depend strongly on inputs (eg, EXP)
- Account for different EVM implementations, account for different platforms: cross-platform metric
- Benchmark for contracts...

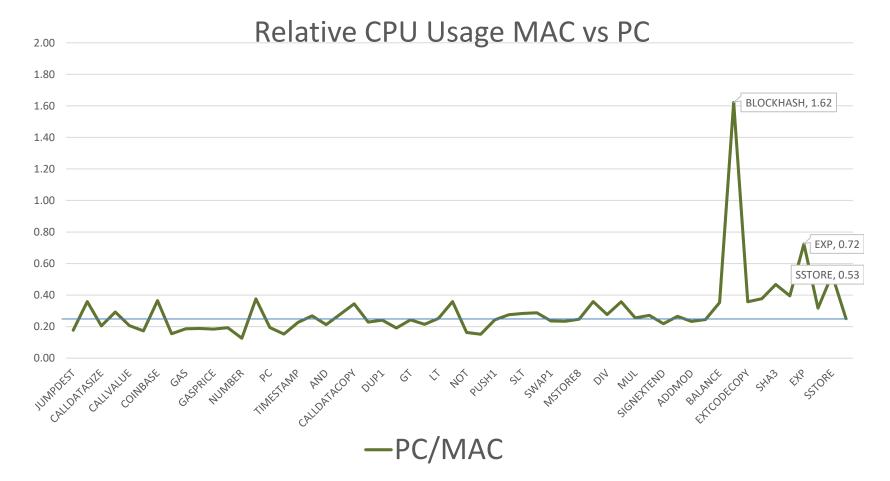
Benchmark for opcode gas


Experiment:

- Implementation in PyEthApp EVM client, using PyEthereum libraries
- All opcodes
- Two OS's:
 - MAC: a MacBook Pro with a 2.8 GHz Intel i5 CPU and 8 GB RAM.
 OS: MACOS High Sierra
 - Desktop:a desktop with a 3.20GHz Intel i7 CPU and 8 GB RAM . OS: Ubuntu Mate 16.04.09
- Results
 - Absolute, in msec
 - Relative: straight lines mean platforms behave similar for various opcodes

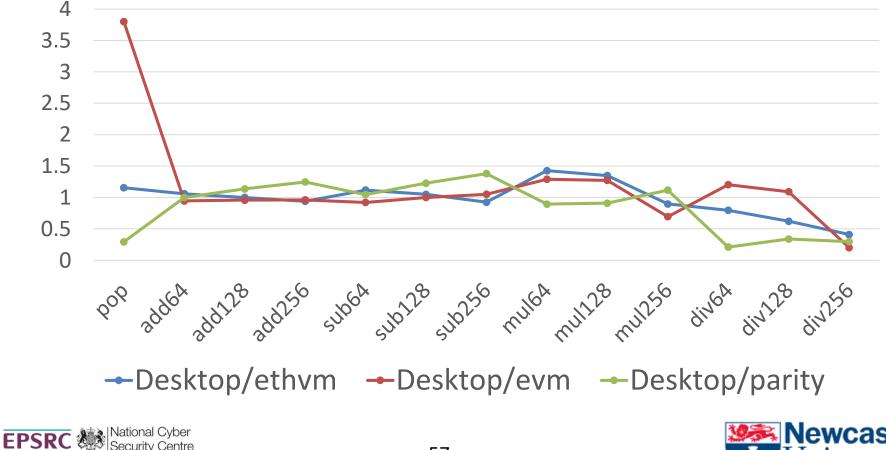

Benchmark Results PyEthereum

Benchmark Results PC



55 © Aad van Moorsel, Newcastle University, 2018

Benchmark MAC vs PC



Comparison different clients

pyethapp on PC versus other EVMs (normalized/relative)

Academic Centre of Excellence

in Cyber Security Research

Conclusion Smart Contract Benchmarks

- Gas set as payment for opcodes not overly accurate
- No good benchmarks yet for opcodes
- Number of challenges are being resolved
- Transaction (i.e. smart contract) execution will determine the miner income → desire to find best platform for typical smart contract executions
- Number of contract benchmark questions out there to be addressed

Blockchain Models & Benchmarks

Other Blockchains

© Aad van Moorsel, Newcastle University, 2018

Variety of blockchains

- Examples of blockchains:
 - Cryptocurrency variants:
 - all coins pre-mined
 - difference in total amount of coins
 - differences in block and transaction fees over time
 - Proof of Stake instead of Proof of Work
 - Smart contracts: general purpose transactions
 - On-chain and off-chain variants, eg. Hyperledger: flexible configurable

Different blockchains, for different applications

Network	Coin	Issuance	Block-making incentive
Bitcoin	втс	Created according to schedule. Total 21 million BTC in 2140.	Block reward + transaction fees
Ripple	XRP	100% pre-mined. 100 billion XRP created.	None
NXT	NXT	100% pre-mined. 1 billion NXT created.	Transaction fees
Ethereum	ETH	72 million pre-mined plus ongoing issuance of 18 million ETH per year.	Block reward + computation fees

From bitsonblocks.net/2015/09/28/a-gentle-introduction-to-digital-tokens/

Blockchain performance in layers

Incentives layer (stakeholder concerns, profit-making, ...)

Connector layer (consensus algorithm, smart contracts, ...)

Processing layer (bare metal, OS, ...)

Connector Layer

Performance of Consensus

- Consensus in blockchain based on PoW, which purposely makes it slow to reach consensus
 - Allows arbitrary nodes to participate
 - Creates effort invested that nodes don't want to loose
- Even without PoW, consensus does not scale well → too many messages for desired speed of updates
- Performance of Bitcoin 1/10,000th of VISA's transaction volume...
- Various improvement proposed, but PoW cannot be remedied...

Performance of Consensus Layer Results from 'Consensus in the age of Bitcoin', 2017, with a lot of subtleties/caveats. Note, VISA is designed for 10,000 tx/s.

	Measured throughput	Measured latency
Bitcoin	7 tx/s	600s
Hyperledger	110 tx/s	<1s
Byzcoin	1000 tx/s	10-20s

Blockchain as a Software Connector

Different applications need different blockchains:

- is PoW needed (open to any participant)?
- what in the system is subject to consensus?
- what physical artifacts are represented?
- does it need a coin?
- how and what to search?

```
•
```

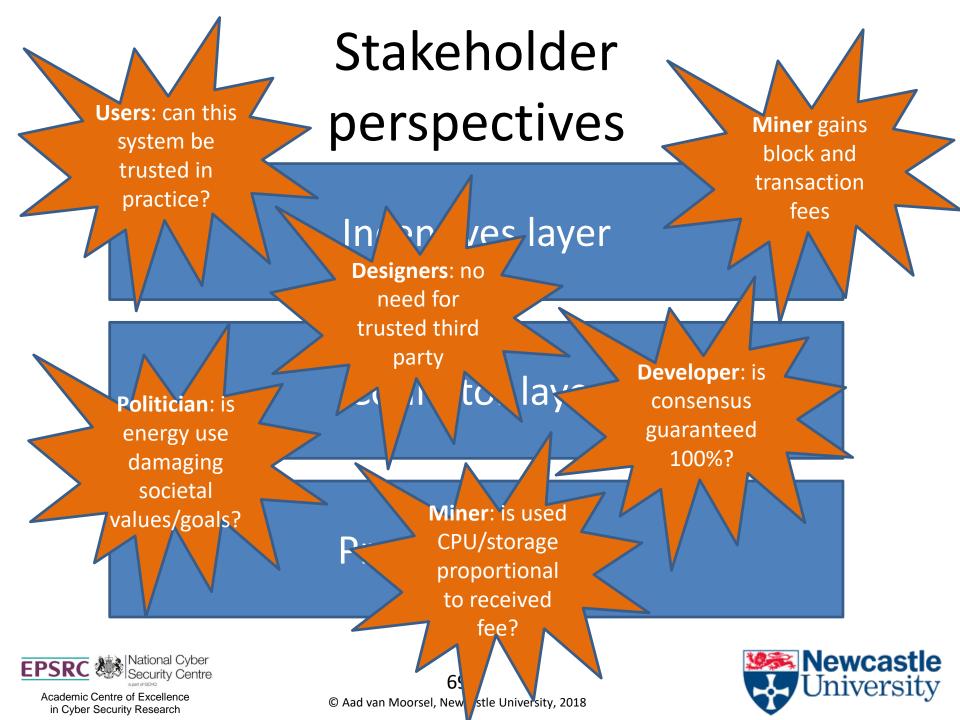
Find the best design for your app and evaluate the resulting properties

Need for Model-Based Evaluation of the Connector Layer

- Consensus properties usually proven under assumptions
- But assumptions behind these properties hold probabilistically
- Follow 'Probabilistic Verification' approach by Sanders et al, Probabilistic Verification of a Synchronous Round-Based Consensus Protocol, SRDS 1997
- Configure the Connector Layer based on the analysis

Recap

Incentives layer


Connector layer

Processing layer

68 © Aad van Moorsel, Newcastle University, 2018

Incentives layer

- Monitoring: learn from what is happening:
 - Longitudinal studies (change over time)
- Model-based analysis of:
 - Long term behaviours and incentive shifts
 - Miner and miner pool strategies
- Need for tools that support
 - Game theory, incentives theory
 - Markov decision processes
- Start considering societal concerns in incentives, eg environmental

Connector layer

- Monitoring: learn from what is happening:
 - Availability studies such as Weber et al, SRDS'17
- Need for model-based tools that support
 - Configure the connector for the application at hand
 - Optimization models for transaction selection, in particular under smart contracts
 - Probabilistic Validation approach to augment 'proofs' under non-real assumptions, in particular for consensus
- Benchmarks:
 - Comparison of throughput and latency for consensus variants
 - Comparison of other basic modules: crypto, smart contracts, PRNG, hashing, ...

Processing layer

 Benchmarks of bitcoin ASIC PoW hashing will continue by industry

Progress needed in:

- Benchmarks of 'blockchain virtual machine' software (i.e., clients)
- Benchmarks of smart contract opcodes

My wish list

- 1. Simulation framework:
 - a. Game-theoretic, Markov decision, for incentives layer
 - b. Probabilistic Verification approach for connector layer
 - c. Integrated from processing to incentives, for many stakeholders
- 2. Benchmark framework:
 - a. Smart contract benchmarks
 - b. Connector benchmarks

Conclusion and Outlook

Many computer scientists: "Blockchain is here to stay, but Bitcoin is not"

HMG new research group: "Bitcoin is here to stay, but Blockchain is not"

Assume they're both here to stay: arguably, blockchains developments can use some sound performance engineering as underpinning

Blockchain Models and Benchmarks

Academic Centre of Excellence in Cyber Security Research

EPSR