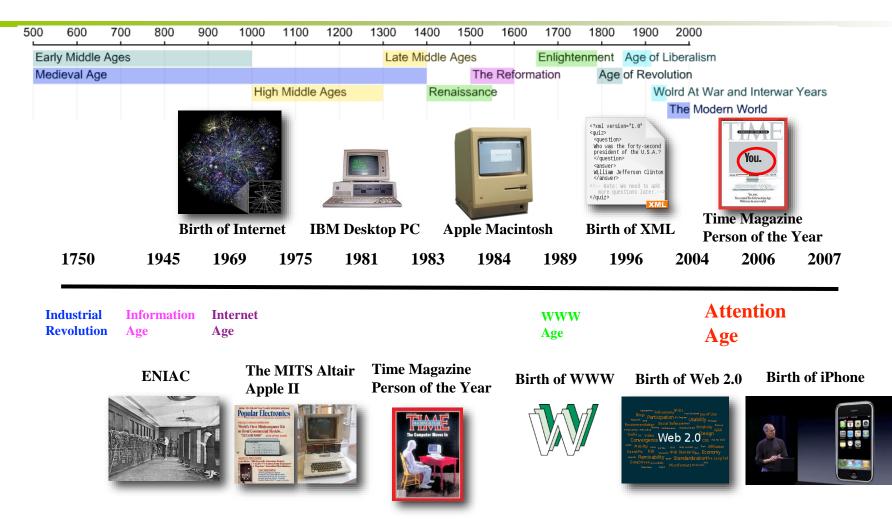
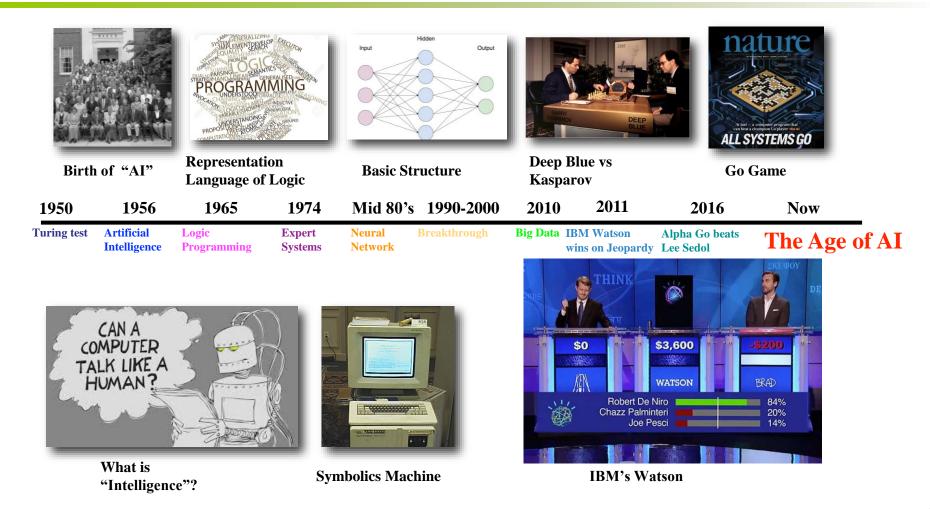

ICPE 2018 Berlin April 12, 2018

# Al Techniques in Software Engineering Paradigm


**Rung-Tsong Michael LYU** 

Computer Science & Engineering Department The Chinese University of Hong Kong






### A Brief History of the IT World



### **A Brief History of AI Development**



## What is Artificial Intelligence (AI)

#### **Human Intelligence**





learning

feeling



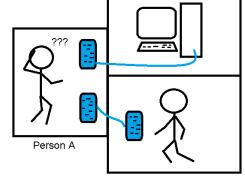
understanding



perceiving






**Boston Dynamics: Atlas** 

#### **Artificial Intelligence**

Artificial Intelligence is the science and engineering of making intelligent machines

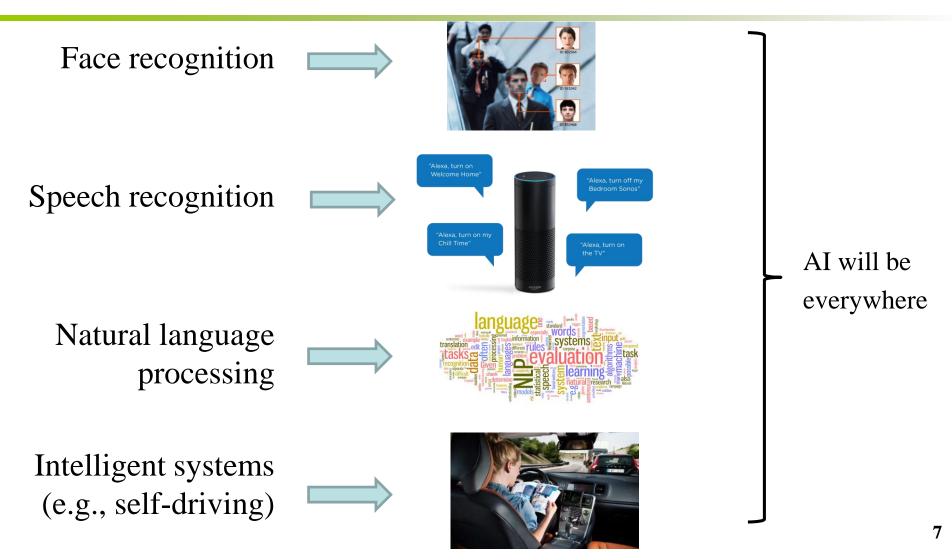


**Turing Test (1950)** 





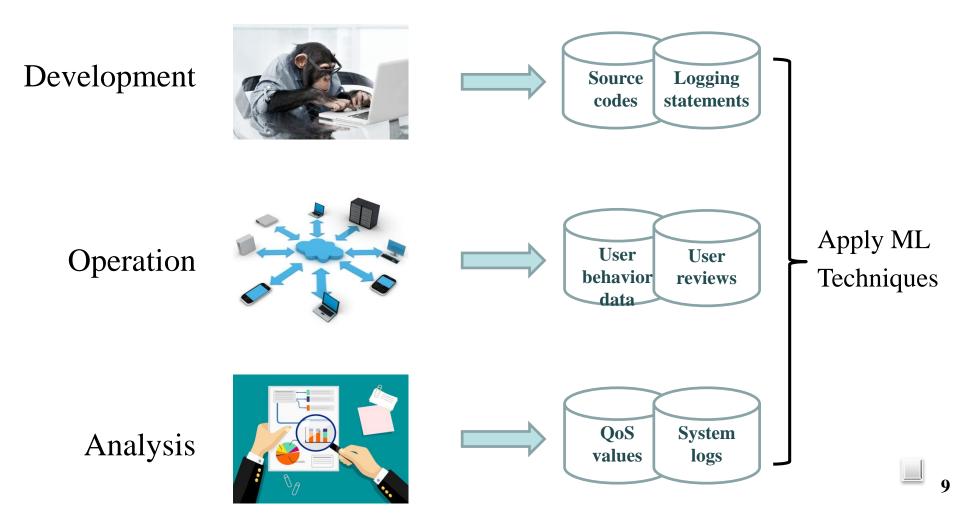
Person X




### What Impact Has AlphaGo Achieved?



• Search space is huge:  $\approx 10^{360}$ 


### **Reborn of Artificial Intelligence**



### **Software Engineering with AI**

### • Software Engineering with Artificial Intelligence: Employing Machine Learning (ML) techniques to assist in <u>labor-intensive</u> and <u>error-prone</u> tasks.

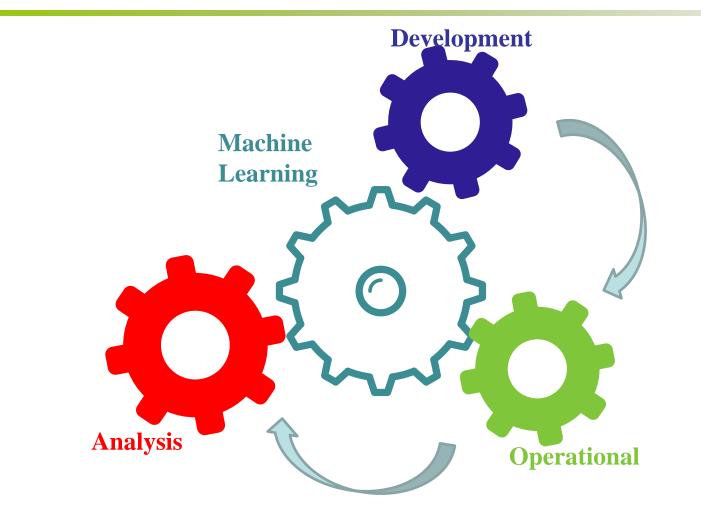
### **Software Engineering with Intelligence**



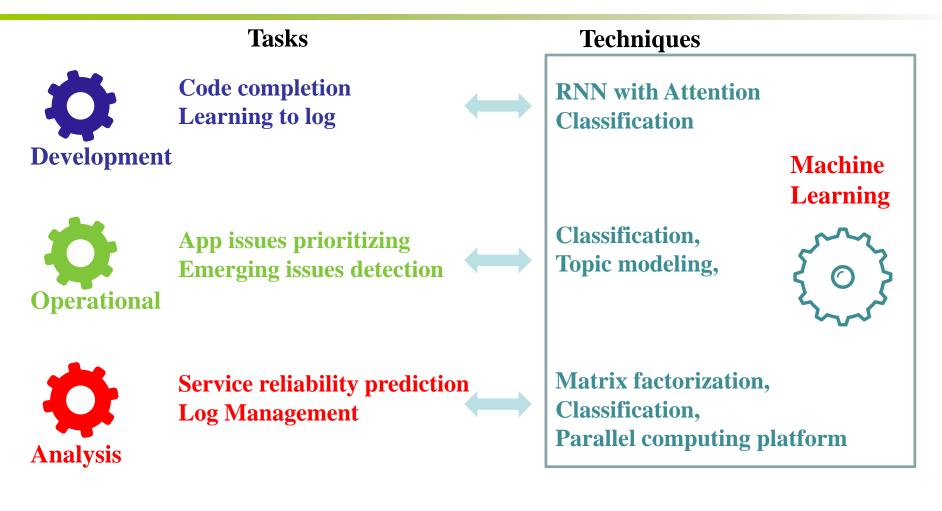


### Introduction

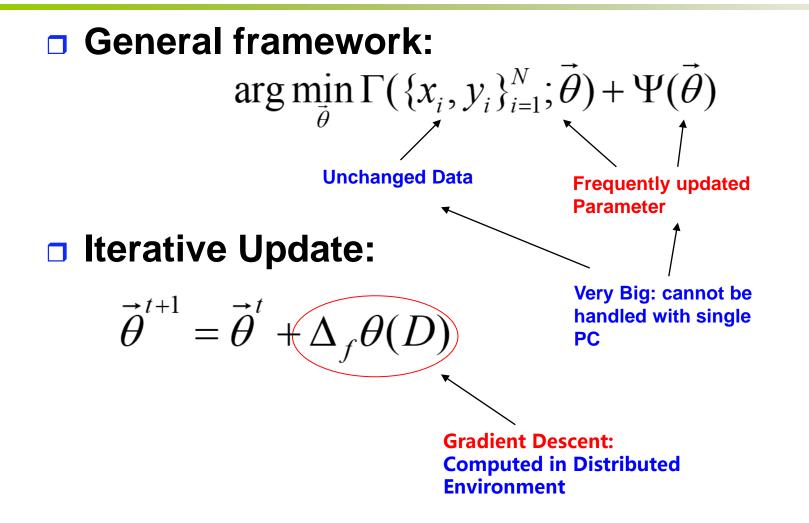
**AI Techniques** 


**Development Phase** 

**Operational Phase** 


**Analysis Phase** 

Conclusion


### **Artificial Intelligence for Software Engineering**



## **Artificial Intelligence for Software Engineering**



### **Machine Learning Framework**



### **Matrix Factorization**

### R

|                       | <i>v</i> <sub>1</sub> | <i>v</i> <sub>2</sub> | v <sub>3</sub> | $v_4$ | $v_5$ | <i>v</i> <sub>6</sub> | $v_7$ | <i>v</i> <sub>8</sub> |
|-----------------------|-----------------------|-----------------------|----------------|-------|-------|-----------------------|-------|-----------------------|
| $u_1$                 | 5                     | 2                     |                | 3     |       | 4                     |       |                       |
| $u_2$                 | 4                     | 3                     |                |       | 5     |                       |       |                       |
| <i>u</i> <sub>3</sub> | 4                     |                       | 2              |       |       |                       | 2     | 4                     |
| u4                    |                       |                       |                |       |       |                       |       |                       |
| u <sub>s</sub>        | 5                     | 1                     | 2              |       | 4     | 3                     |       |                       |
| u <sub>6</sub>        | 4                     | 3                     |                | 2     | 4     |                       | 3     | 5                     |

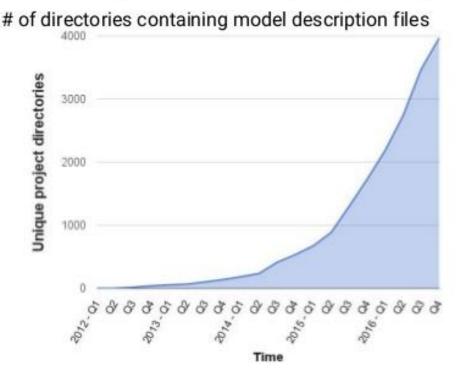
|                       | <i>v</i> <sub>1</sub> | $v_2$ | <i>v</i> <sub>3</sub> | $v_4$ | $v_5$ | <i>v</i> <sub>6</sub> | <i>v</i> <sub>7</sub> | $v_8$ |
|-----------------------|-----------------------|-------|-----------------------|-------|-------|-----------------------|-----------------------|-------|
| $u_1$                 | 5                     | 2     | 2.5                   | 3     | 4.8   | 4                     | 2.2                   | 4.8   |
| $u_2$                 | 4                     | 3     | 2.4                   | 2.9   | 5     | 4.1                   | 2.6                   | 4.7   |
| <i>u</i> <sub>3</sub> | 4                     | 1.7   | 2                     | 3.2   | 3.9   | 3.0                   | 2                     | 4     |
| u4                    | 4.8                   | 2.1   | 2.7                   | 2.6   | 4.7   | 3.8                   | 2.4                   | 4.9   |
| u <sub>5</sub>        | 5                     | 1     | 2                     | 3.4   | 4     | 3                     | 1.5                   | 4.6   |
| $u_6$                 | 4                     | 3     | 2.9                   | 2     | 4     | 3.4                   | 3                     | 5     |

### $\boldsymbol{R} \approx \boldsymbol{U}^T \boldsymbol{V}$

|     | 1.55 1.22    | 0.37  | 0.81 | 0.62  | -0.01 |     | 1.00  | -0.05 | -0.24 | 0.26  | 1.28 | 0.54 | -0.31 | 0.52 |
|-----|--------------|-------|------|-------|-------|-----|-------|-------|-------|-------|------|------|-------|------|
|     | $0.36\ 0.91$ | 1.21  | 0.39 | 1.10  | 0.25  |     | 0.19  | -0.86 | -0.72 | 0.05  | 0.68 | 0.02 | -0.61 | 0.70 |
| U = | $0.59\ 0.20$ | 0.14  | 0.83 | 0.27  | 1.51  | V = | 0.49  | 0.09  | -0.05 | -0.62 | 0.12 | 0.08 | 0.02  | 1.60 |
|     | 0.39 1.33    | -0.43 | 0.70 | -0.90 | 0.68  |     | -0.40 | 0.70  | 0.27  | -0.27 | 0.99 | 0.44 | 0.39  | 0.74 |
|     | $1.05\ 0.11$ | 0.17  | 1.18 | 1.81  | 0.40  |     | 1.49  | -1.00 | 0.06  | 0.05  | 0.23 | 0.01 | -0.36 | 0.80 |

### **Low-Rank Matrix Factorization**

Objective function

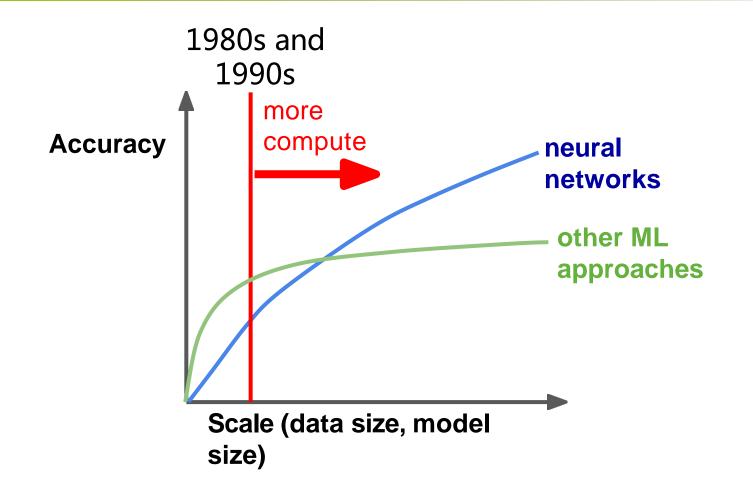

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[ I_{ij} (R_{ij} - U_i^T V_j)^2 + \frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2 \right]$$
Main Objective Regularization terms

 $I_{ij}$  is the indicator function that is equal to 1 if user  $u_i$  rated item  $v_j$  and equal to 0 otherwise

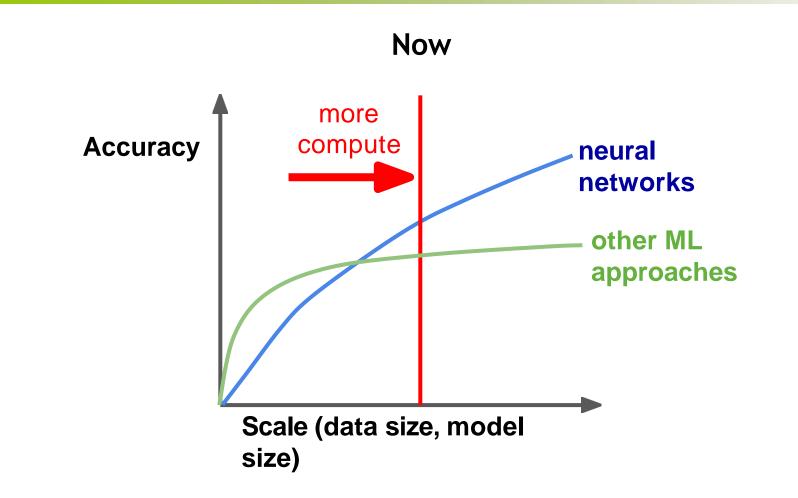
 $U_i, V_j$ : low dimension column vectors to represent user/item preferences.

## **The Growing of Deep Learning**

#### Growing Use of Deep Learning at Google

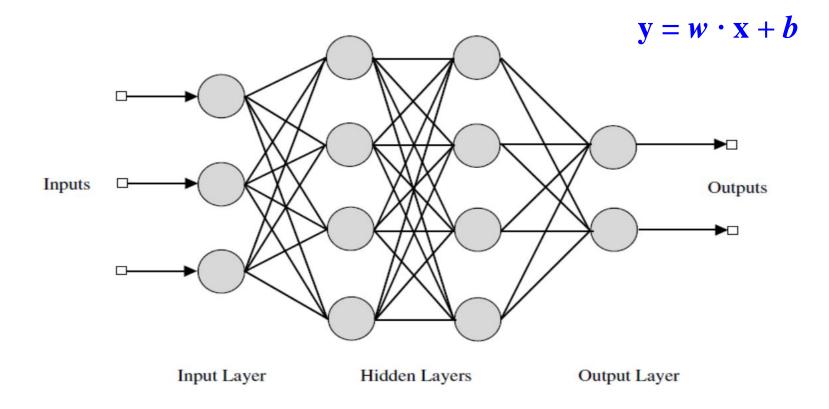



Across many products/areas: Android Apps drug discovery Gmail Image understanding Maps Natural language understanding Photos Robotics research Speech Translation YouTube ... many others ...



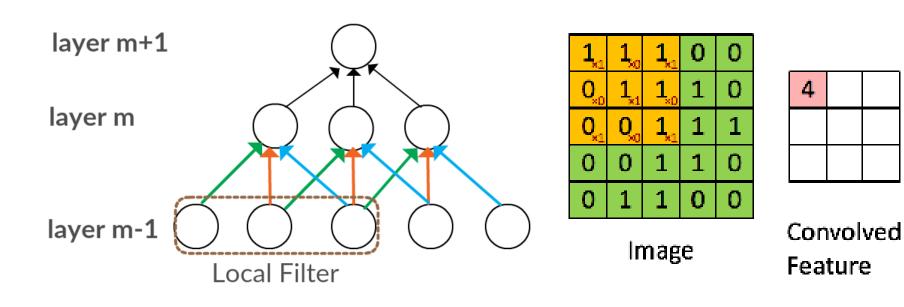

Deep learning trends at Google. Source: SIGMOD/Jeff Dean

### **Deep Learning Is Neural Networks**



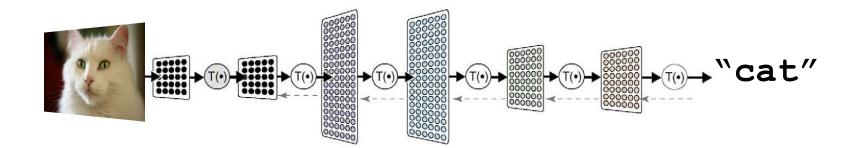

### **Deep Learning Is Neural Networks**



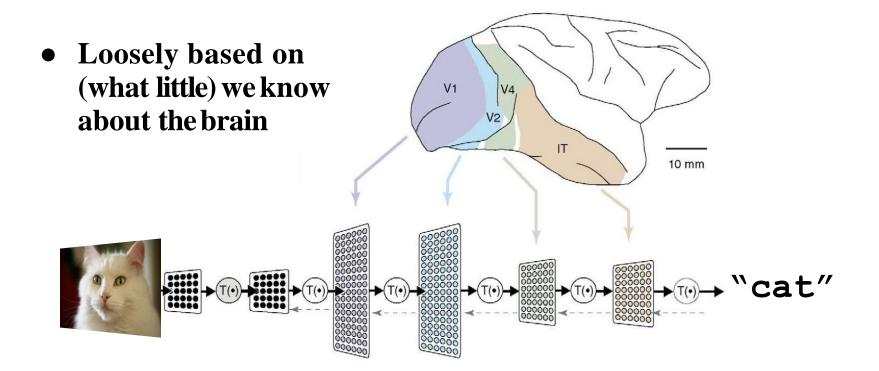

### **Deep Learning**

#### **Feedforward Neural Networks (FFN)**

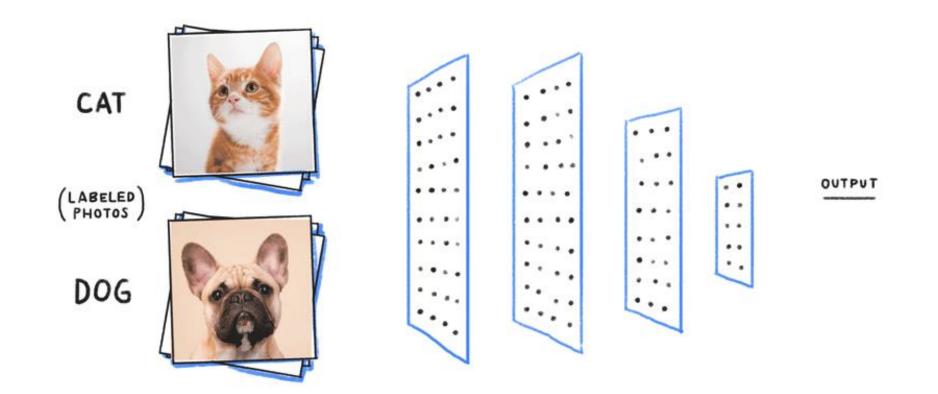



### **Deep Learning**

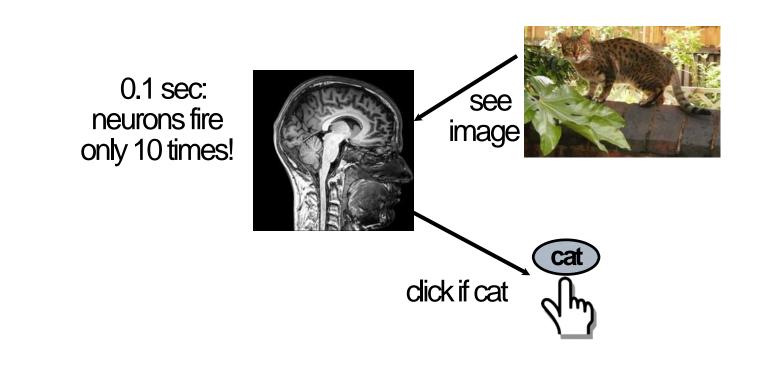
#### **Convolutional Neural Networks (CNN)**




### What is Deep Learning?


- A powerful class of machine learning model
- Modern reincarnation of artificial neural networks
- Collection of simple, trainable mathematical functions
- Compatible with many variants of machine learning




### What is Deep Learning?



### **How Do Neural Networks Work?**



### **How Do Neural Networks Work?**



Anything humans can do in 0.1 sec, the right big 10-layer network can do too

### **Computers Can Now See**

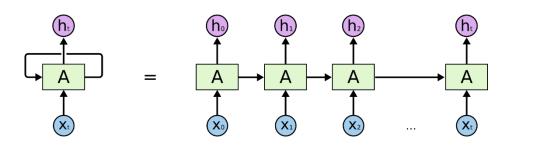
# **Combining Vision with Robotics**

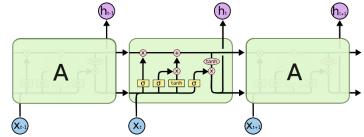
<u>"Deep Learning for Robots:</u> <u>Learning from Large-Scale</u> <u>Interaction"</u>, Google Research Blog, March, 2016

"Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection", Sergey Levine, Peter Pastor, Alex Krizhevsky, & Deirdre Quillen, Arxiv, <u>arxiv.org/abs/1603.02199</u>



### What Can Neural Networks Compute?


Human perception is very fast (0.1 second)

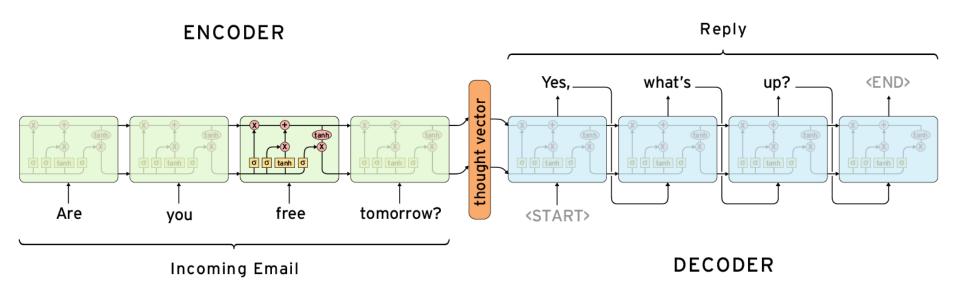

- Recognize objects ("see")
- Recognize speech ("hear")
- Recognize emotion
- Instantly see how to solve some problems
- And many more!



### **Deep Learning**

#### **Recurrent Neural Networks (RNN)**

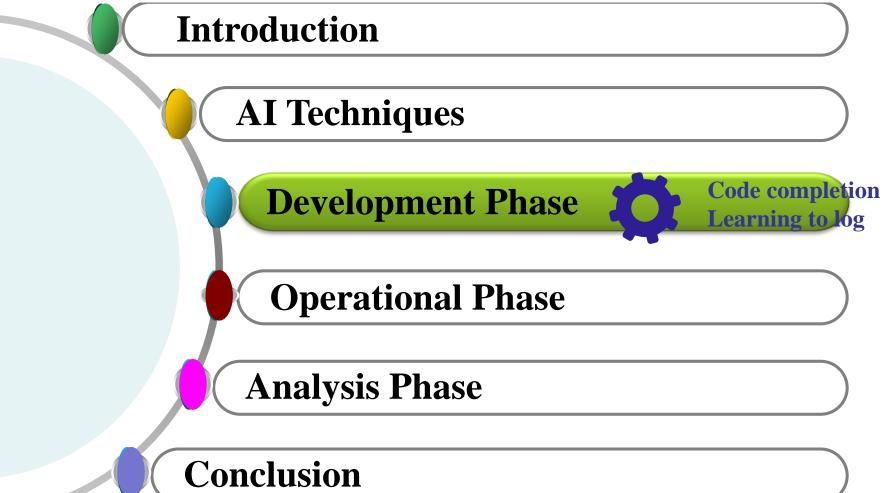





A standard RNN

An LSTM network

### **Deep Learning**


#### **Sequence-to-Sequence Models**

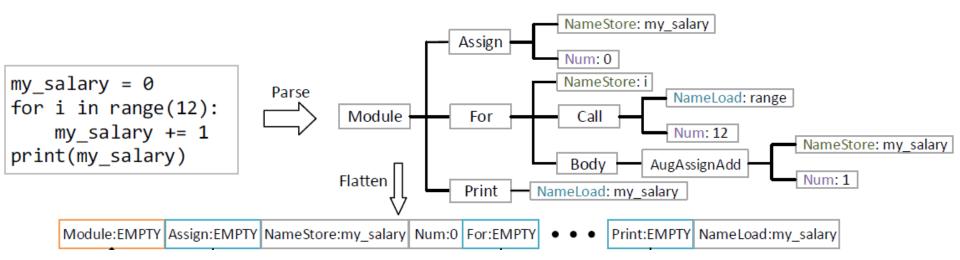


### **Deep Learning Platforms**



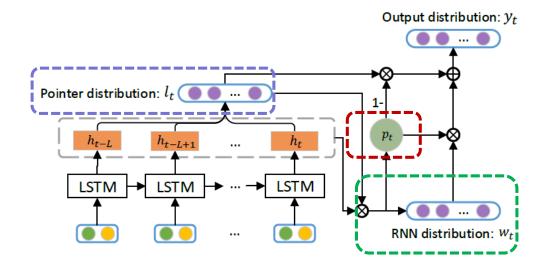





• Code completion

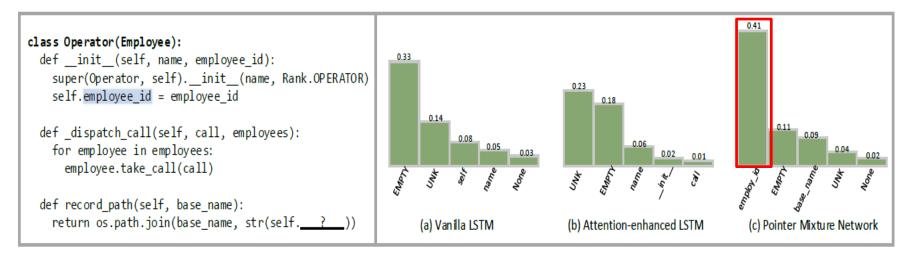
Aliases aliases = template.getClass().getAnnotation(Aliases.class);
if (aliases != null) {

| <pre>for (Str cast ((SomeType) expr) regi forr for (int i = expr.length-1; i &gt;= 0; i) }  / / / / / / / / / / / / / / / / / /</pre>                                                                                                                       |   | aliase | es.value().  |                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|--------------|-----------------------------------------------------------------|
| <pre>} instanceof expr instanceof SomeType ? ((SomeType) expr). : null var notnull if (expr != null) par fori for (int i = 0; i &lt; expr.length; i++) null if (expr == null) field myField = expr; return return expr; for for (T item : collection)</pre> |   | for (S | itr cast     | ((SomeType) expr)                                               |
| <pre>yar T name = expr;<br/>notnull if (expr != null)<br/>par (expression)<br/>fori for (int i = 0; i &lt; expr.length; i++)<br/>null if (expr == null)<br/>field myField = expr;<br/>return return expr;<br/>for for (T item : collection)</pre>           |   | re     | gi forr      | for (int i = expr.length-1; i >= 0; i)                          |
| notnullif (expr != null)par(expression)forifor (int i = 0; i < expr.length; i++)                                                                                                                                                                            |   | }      | instanceof   | <pre>expr instanceof SomeType ? ((SomeType) expr). : null</pre> |
| par(expression)forifor (int i = 0; i < expr.length; i++)                                                                                                                                                                                                    | } |        | var          | T name = expr;                                                  |
| forifor (int i = 0; i < expr.length; i++)nullif (expr == null)fieldmyField = expr;returnreturn expr;forfor (T item : collection)                                                                                                                            |   |        | notnull      | if (expr != null)                                               |
| nullif (expr == null)fieldmyField = expr;returnreturn expr;forfor (T item : collection)                                                                                                                                                                     |   |        | par          | (expression)                                                    |
| field myField = expr;<br>return return expr;<br>for for (T item : collection)                                                                                                                                                                               |   |        | fori         | <pre>for (int i = 0; i &lt; expr.length; i++)</pre>             |
| return return expr;<br>for for (T item : collection)                                                                                                                                                                                                        |   |        | null         | if (expr == null)                                               |
| for for (T item : collection)                                                                                                                                                                                                                               |   |        | field        | myField = expr;                                                 |
|                                                                                                                                                                                                                                                             |   |        | return       | return expr;                                                    |
|                                                                                                                                                                                                                                                             |   |        | for          | for (T item : collection)                                       |
| synchronized synchronized (expr)                                                                                                                                                                                                                            |   |        | synchronized | synchronized (expr)                                             |


- Intelligent code completion is essential for software engineers
- Programming languages: static vs dynamic
- Out-of-Vocabulary (OoV) problem: many words are sparse, e.g. user-defined identifiers

- Abstract syntax tree (AST)
- Locally repeated terms




A Python program and its corresponding abstract syntax tree

- Pointer mixture network
  - -Global RNN component
  - -Local pointer component
  - Controller



- Contributions:
  - -Pointer mixture network for better predicting OoV words
  - -Effectiveness of attention mechanism
  - Significant improvements in code completion task

• Case study



• Pointer Mixture Network successfully point to employee\_id, which is an OoV word

- Dataset
  - JavaScript (JS) and Python (PY)

| Table 1: Dataset Statistics |                |                |  |  |  |  |  |  |  |
|-----------------------------|----------------|----------------|--|--|--|--|--|--|--|
|                             | JS             | PY             |  |  |  |  |  |  |  |
| Training Queries            | $10.7 * 10^7$  | $6.2 * 10^{7}$ |  |  |  |  |  |  |  |
| Test Queries                | $5.3 * 10^{7}$ | $3.0 * 10^{7}$ |  |  |  |  |  |  |  |
| Type Vocabulary             | 95             | 329            |  |  |  |  |  |  |  |
| Value Vocabulary            | $2.6 * 10^{6}$ | $3.4 * 10^{6}$ |  |  |  |  |  |  |  |

• Accuracies on next value prediction with different vocabulary sizes

Table 2: Accuracies on next value prediction with different vocabulary sizes. The out-of-vocabulary (OoV) rate denotes the percentage of AST nodes whose value is beyond the global vocabulary.

|                                |          | JS        |          | PY       |           |           |  |
|--------------------------------|----------|-----------|----------|----------|-----------|-----------|--|
| Vocabulary Size (OoV Rate)     | 1k (20%) | 10k (11%) | 50k (7%) | 1k (24%) | 10k (16%) | 50k (11%) |  |
| Vanilla LSTM                   | 69.9%    | 75.8%     | 78.6%    | 63.6%    | 66.3%     | 67.3%     |  |
| Attention-enhanced LSTM (ours) | 71.7%    | 78.1%     | 80.6%    | 64.9%    | 68.4%     | 69.8%     |  |
| Pointer Mixture Network (ours) | 73.2%    | 78.9%     | 81.0%    | 66.4%    | 68.9%     | 70.1%     |  |

- Comparisons against the state-of-the-arts
  - Note that Pointer Mixture Network can be only used for predicting VALUE node (TYPE node has small size of vocabulary)

Table 3: Comparisons against the state-of-the-arts. The upper part is the results from our experiments while the lower part is the results from prior work. TYPE means next node type prediction and VALUE means next node value prediction.

|                                           |       | JS    |       | PY    |
|-------------------------------------------|-------|-------|-------|-------|
|                                           | TYPE  | VALUE | TYPE  | VALUE |
| Vanilla LSTM                              | 87.1% | 78.6% | 79.3% | 67.3% |
| Attention-enhanced LSTM (ours)            | 88.6% | 80.6% | 80.6% | 69.8% |
| Pointer Mixture Network (ours)            | -     | 81.0% | -     | 70.1% |
| LSTM (Liu et al. 2016)                    | 84.8% | 76.6% | -     | -     |
| Probabilistic Model (Raychev et al. 2016) | 83.9% | 82.9% | 76.3% | 69.2% |

• Observations: our models outperform the state-of-the-art in almost all cases

- Challenges of logging
  - -Logging too little
    - Miss valuable runtime information
    - Increase the difficulty for problem diagnosis





- Logging too much
  - Additional cost of code dev. & maintenance
  - Runtime overhead
  - Producing a lot of trivial logs
  - Storage overhead

• What is logging?

Log (level, "logging message %s", variable);

- A common programming practice to record runtime system information
- Logging functions: e.g., printf, cout, writeline, etc.
- Logs are crucial for system management
  - Various tasks of log analysis
    - Anomaly detection, failure diagnosis, etc.
  - The only data available for diagnosing production failures

Logging is important!

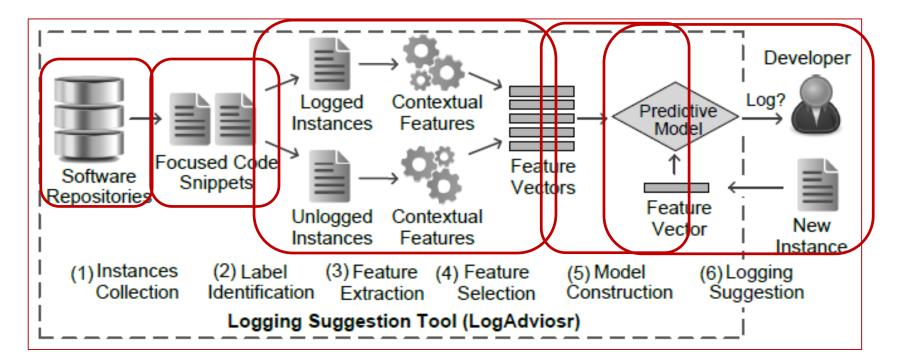
- Focused snippets: potential error sites
  - Exception snippets: try-catch blocks
  - Return-value-check snippets: function-return errors

```
Example 1 Example 2

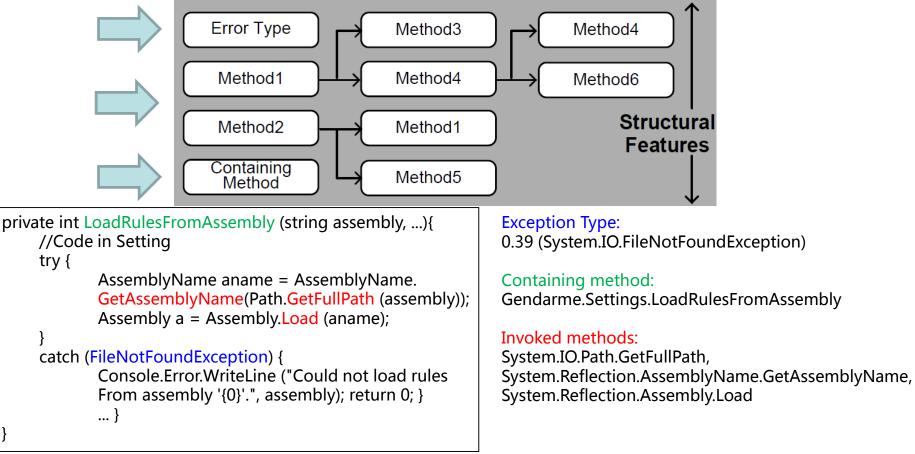
try {

method(...);

}

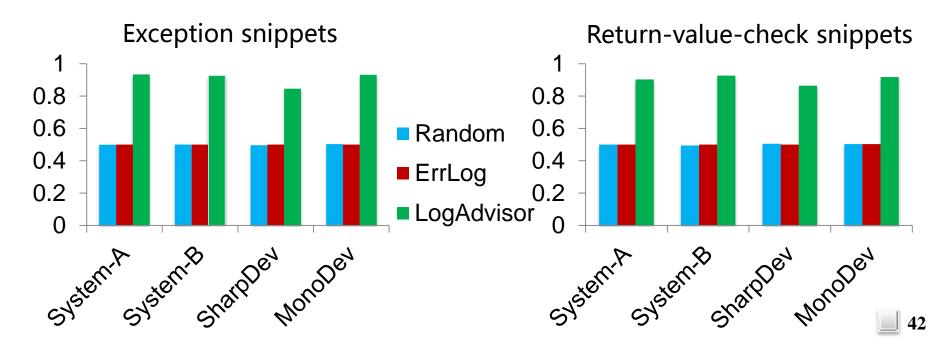

catch (IOException) {

log(...);

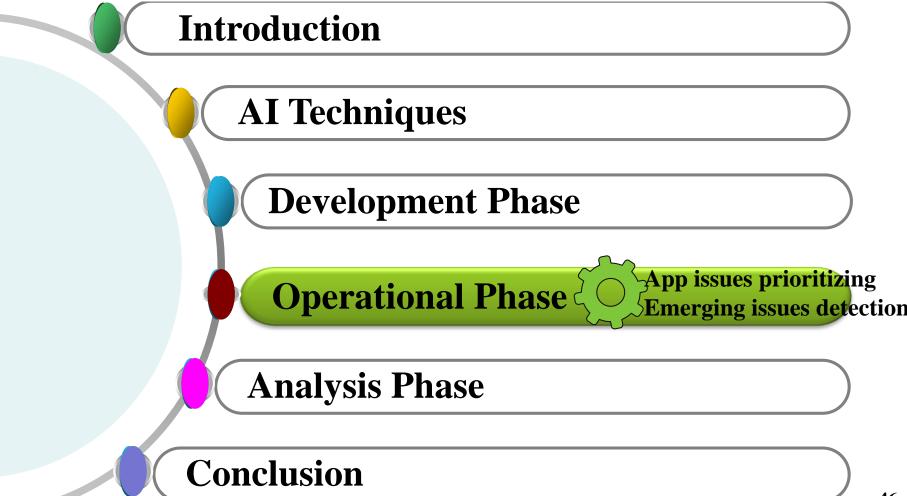

...

}
```

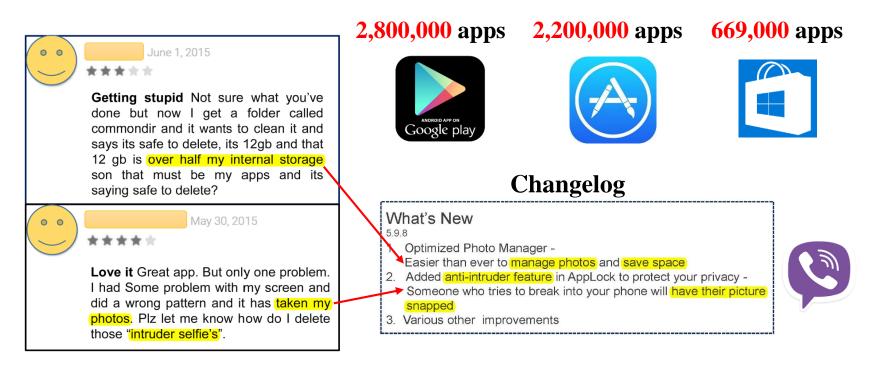
- Framework of learning to log
  - Similar to other machine learning applications (e.g., defect prediction)

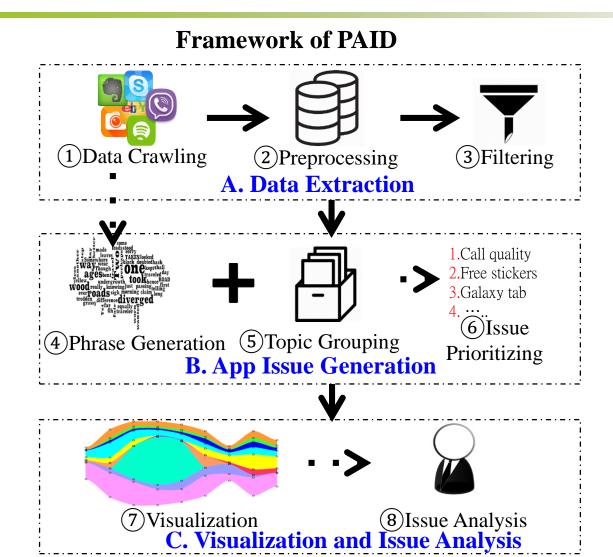


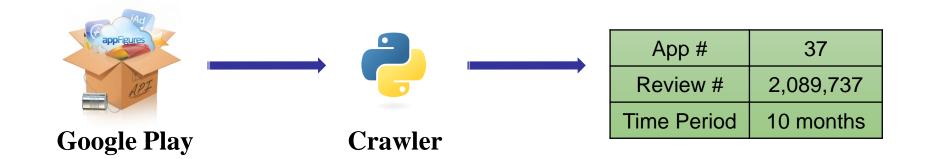

• Structural features: structural info of code



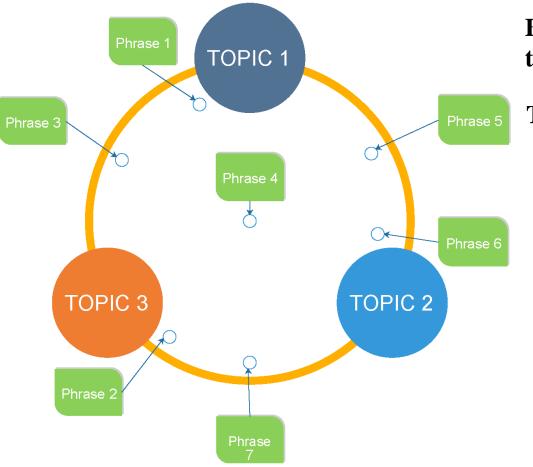

/\* A code example taken from MonoDevelop (v.4.3.3), at file: \* main\external\mono-tools\gendarme\console\Settings.cs, \* line: 116. Some lines are omitted for ease of presentation. \*/


- Within-project evaluation
  - Random: randomly logging (as a new developer)
  - ErrLog [Yuan et al., OSDI'12]: conservatively logging all focused snippets
  - **LogAdvisor**: 0.846 ~ 0.934 accuracy achieved







- User reviews are valuable source for pinpointing emerging issues for app development.
- Capturing user-concerned issues and tracking their trends





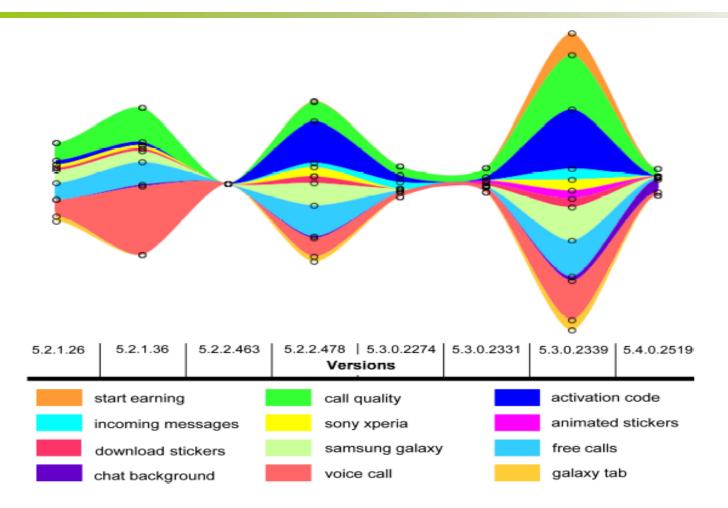


| ID | Title   | Review                                                                                                       | Date                    | Stars | Version      |
|----|---------|--------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------------|
| 1  | Crash   | Like it cause it doesn't crash on androids                                                                   | 2014-11-<br>09T08:55:47 | 5     | 15.0.0.15.13 |
| 2  | Rubbish | When I try to connect with<br>Mobile Network Package, this<br>don't work and giving<br>"Connecting Problem". | 2014-11-<br>12T18:32:25 | 1     | 15.0.0.15.10 |



# Based on topic modeling, each topic is labeled with one phrase.

#### **Topic Labeling Process:**


Rank phrases for each topic by:

• Semantic aspect: KL-Divergence

 $Sem(\beta_i, l) = Sim(\beta_i, l) - \frac{\mu}{k-1} \sum_{j \neq i} Sim(\beta_j, l)$ 

- Sentiment aspect:  $Sen(l) = e^{\frac{-r}{ln(h)}}$
- Total score:

 $S(\beta_i, l) = Sem(\beta_i, l) * Sen(l)$ 



#### The Themeriver of Viber.

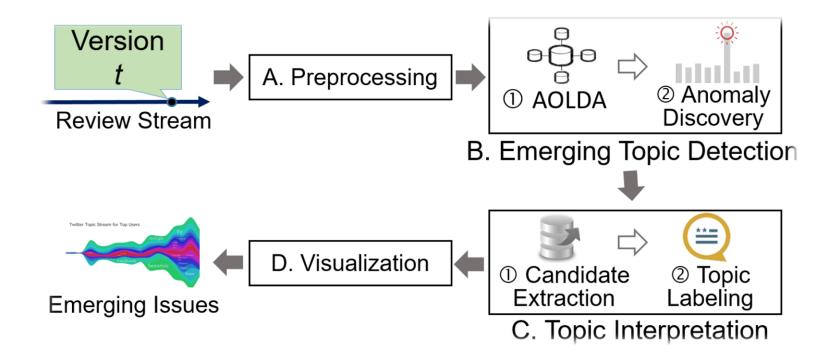
#### **Rank top reviews for each topic:**

The Top Three Reviews Related to "Activation Code"

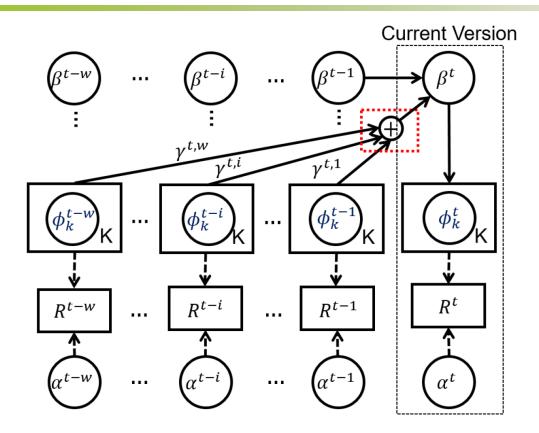
|   | User Review                                                                                                                                                                                                                                                            | Importance<br>Score |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1 | Upload viber! I went. Enter a phone number. I enter. Asks<br>for sure your phone? It will be sent an activation code. Ok.<br>Messages are not present. He writes to activate viber here,<br>install it to your phone first. But I have it pumped? What to<br>do? Help! | 0.836               |
| 2 | I hard reset my tab 3. Installed viber for activation code<br>when i write my phone number and press okay a white<br>popup written only. ERROR no description given and an<br>okay button on it please help me vibers my only way to<br>contact my son abroad.         | 0.834               |
| 3 | I don't know what's wrong with Viber. Just downloaded it<br>nd it keeps on saying activation code sent to your device.<br>For almost a month, no any activation code and it's really<br>pissing me off. Pls fix.                                                       | 0.828               |
|   |                                                                                                                                                                                                                                                                        |                     |

#### **Operation: Emerging Issues Detection**



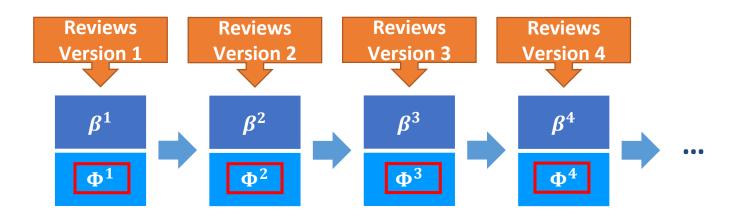

#### **IDEA**

**ID**entifying **E**merging Issues from **A**pp Reviews


- **D** Automatic tool for app review analysis
- **Discovering emerging issues dynamically**
- **Comprehensive issue interpretation**
- □ Visualizing issue progression over versions



#### **Overall Framework**



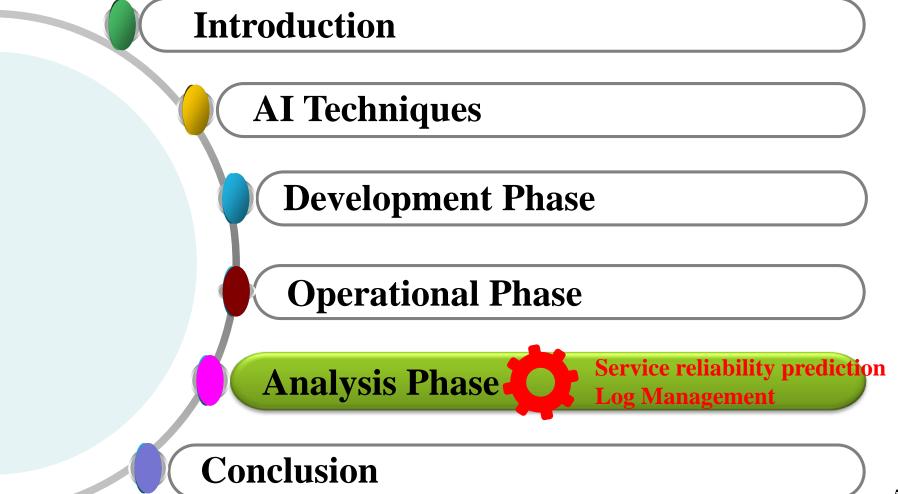

#### **Online Topic Modeling**



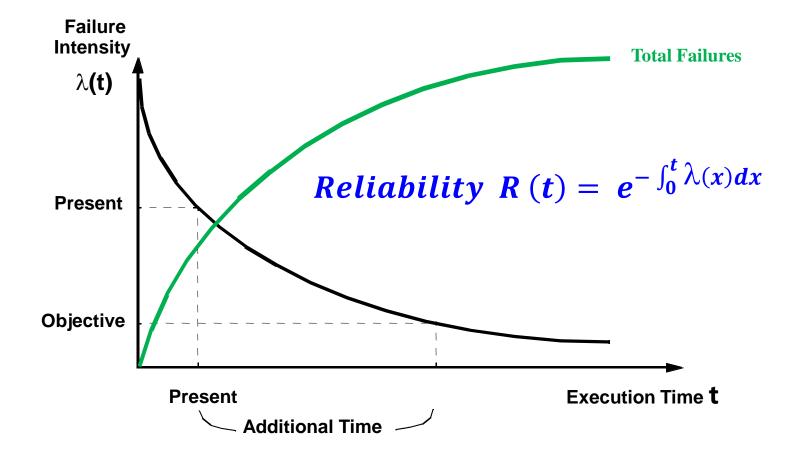
Overview of AOLDA (Adaptively Online Latent Dirichlet Allocation). The red rectangle with dashed dots highlights the adaptive integration of the topics of the w previous versions.

#### **Emerging Issue Detection**




Anomaly Detection - Jensen-Shannon Divergence  $D_{JS}(\phi_k^t || \phi_k^{t-1}) = \frac{1}{2} D_{KL}(\phi_k^t || M) + \frac{1}{2} D_{KL}(\phi_k^{t-1} || M)$   $D_{KL}(P || Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)}.$ 

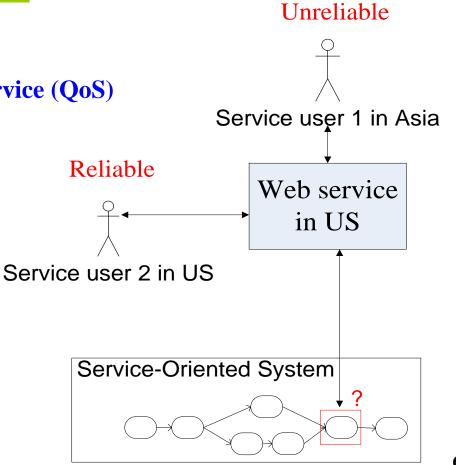
#### **Experimental Result**


| App Name        |                   |                        | Phrase              |                     |                        | Sentence            |                     |
|-----------------|-------------------|------------------------|---------------------|---------------------|------------------------|---------------------|---------------------|
| (#avg. reviews) | Method            | Precision <sub>E</sub> | $\text{Recall}_{L}$ | F <sub>hybrid</sub> | Precision <sub>E</sub> | $\text{Recall}_{L}$ | F <sub>hybrid</sub> |
|                 | OLDA              | 0.468                  | 0.528               | 0.473               | 0.482                  | 0.622               | 0.534               |
| NOAA Radar      | IDEA-R            | 0.606                  | 0.461               | 0.520               | 0.478                  | 0.570               | 0.503               |
| (523)           | IDEA-S            | 0.250                  | 0.530               | 0.340               | 0.417                  | 0.547               | 0.473               |
|                 | $IDEA^+$          | 0.571                  | 0.497               | 0.531               | 0.476                  | 0.639               | 0.546               |
|                 | OLDA              | 0.441                  | 0.462               | 0.451               | 0.578                  | 0.664               | 0.597               |
| Youtube         | IDEA-R            | 0.506                  | 0.429               | 0.456               | 0.550                  | 0.659               | 0.586               |
| (1,143)         | IDEA-S            | 0.548                  | 0.466               | 0.502               | 0.456                  | 0.656               | 0.522               |
|                 | $IDEA^+$          | 0.592                  | 0.472               | 0.523               | 0.628                  | 0.666               | 0.636               |
|                 | OLDA              | 0.157                  | 0.305               | 0.166               | 0.313                  | 0.550               | 0.375               |
| Viber           | IDEA-R            | 0.542                  | 0.326               | 0.407               | 0.625                  | 0.571               | 0.597               |
| (2, 141)        | IDEA-S            | 0.500                  | 0.342               | 0.406               | 0.500                  | 0.518               | 0.509               |
|                 | $IDEA^+$          | 0.625                  | 0.340               | 0.440               | 0.625                  | 0.651               | 0.638               |
|                 | OLDA              | 0.300                  | 0.269               | 0.160               | 0.200                  | 0.421               | 0.129               |
| Clean Master    | IDEA-R            | 0.500                  | 0.216               | 0.301               | 0.750                  | 0.377               | 0.502               |
| (6,332)         | IDEA-S            | 0.067                  | 0.289               | 0.366               | 0.500                  | 0.398               | 0.443               |
|                 | IDEA <sup>+</sup> | 0.667                  | 0.318               | 0.431               | 0.667                  | 0.434               | 0.526               |
|                 | OLDA              | 0.167                  | 0.238               | 0.196               | 0.500                  | 0.488               | 0.494               |
| Ebay            | IDEA-R            | 0.229                  | 0.243               | 0.220               | 0.646                  | 0.496               | 0.561               |
| (3,943)         | IDEA-S            | 0.125                  | 0.285               | 0.132               | 0.354                  | 0.476               | 0.406               |
|                 | IDEA <sup>+</sup> | 0.229                  | 0.251               | 0.227               | 0.646                  | 0.527               | 0.580               |
|                 | OLDA              | 0.100                  | 0.567               | 0.148               | 0.367                  | 0.617               | 0.458               |
| SwiftKey        | IDEA-R            | 0.333                  | 0.611               | 0.376               | 0.417                  | 0.733               | 0.515               |
| (1,313)         | IDEA-S            | 0.333                  | 0.622               | 0.372               | 0.500                  | 0.711               | 0.587               |
|                 | $IDEA^+$          | 0.517                  | 0.653               | 0.523               | 0.583                  | 0.700               | 0.587               |

#### https://remine-lab.github.io/






#### Software Reliability Prediction: Small Data Modeling





**Reliability is extended to Quality-of-Service (QoS)** 

- Key idea: Using past usage experiences of similar users.
- Issue: How to calculate user similarity?



Similarity Computation

• User-item matrix:  $M \times N$ , each entry is the failure probability of a Web service

|                       | ws <sub>1</sub> | WS <sub>2</sub> | ws <sub>3</sub> | WS4 | ws <sub>5</sub> | ws <sub>6</sub> |
|-----------------------|-----------------|-----------------|-----------------|-----|-----------------|-----------------|
| $u_1$                 | 0.1             | 0.1             |                 | 0.2 | 0?5             | 0.3             |
| <i>u</i> <sub>2</sub> |                 | 0.1             |                 | 0.2 | 0.5             | 0.3             |
| <i>u</i> <sub>3</sub> | 0.4             |                 | 0.3             |     | 0.1             |                 |
| <i>u</i> <sub>4</sub> |                 | 0.6             |                 | 0.4 |                 |                 |
| <i>u</i> <sub>5</sub> | 0.5             |                 | 0.3             |     |                 | 0.3             |

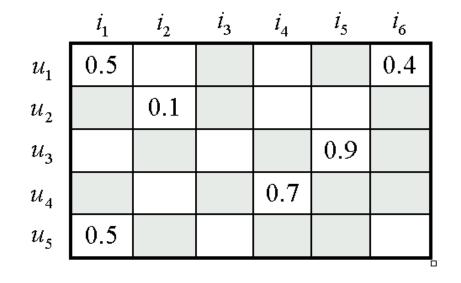
• Pearson Correlation Coefficient (PCC)

$$Sim(a, u) = \frac{\sum_{i \in I_a \cap I_u} (p_{a,i} - \overline{p_a})(p_{u,i} - \overline{p_u})}{\sqrt{\sum_{i \in I_a \cap I_u} (p_{a,i} - \overline{p_a})^2} \sqrt{\sum_{i \in I_a \cap I_u} (p_{u,i} - \overline{p_u})^2}}$$

➢WSRec: Hybrid Prediction Approach

• Similar users + Similar Web services

$$p_{u,i} = \lambda \times \left( \overline{p_u} + \sum_{a \in S(u)} w_a \times (p_{a,i} - \overline{p_a}) \right) + \bullet \mathsf{UPCC}$$
$$(1 - \lambda) \times \left( \overline{p_i} + \sum_{k \in S(i)} w_k \times (p_{u,k} - \overline{p_k}) \right) \to \mathsf{IPCC}$$


#### Performance Comparison

MAE and RMSE Comparison With Basic Approaches (A smaller MAE or RMSE value means a better performance)

| Metric D | 20%  | Methods<br>UMEAN<br>IMEAN<br>UPCC<br>IPCC<br>WSRec<br>UMEAN<br>IMEAN<br>UPCC | G10<br>1623<br>903<br>1148<br>768<br>758<br>1585<br>866 | ponse 7<br>G20<br>1539<br>901<br>877<br>736<br>700<br>1548 | Time<br>G30<br>1513<br>907<br>810<br>736<br>672 | G10<br>5.71%<br>2.40%<br>4.85%<br>2.24% | Failure Rat<br>G20<br>5.58%<br>2.36%<br>4.20%<br>2.16% | te<br>G30<br>5.53%<br>2.46%<br>3.86% | G10<br>1521<br>861 | ponse 7<br>G20<br>1439<br>872 | G30<br>1399<br>855 | G10<br>5.01%<br>1.62% | ailure Rat<br>G20<br>5.00%<br>1.58% | e<br>G30<br>4.97%<br>1.68% |
|----------|------|------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------|-------------------------------|--------------------|-----------------------|-------------------------------------|----------------------------|
| MAE      |      | IMEAN<br>UPCC<br>IPCC<br>WSRec<br>UMEAN<br>IMEAN<br>UPCC                     | 1623<br>903<br>1148<br>768<br><b>758</b><br>1585<br>866 | 1539<br>901<br>877<br>736<br><b>700</b>                    | 1513<br>907<br>810<br>736                       | 5.71%<br>2.40%<br>4.85%<br>2.24%        | 5.58%<br>2.36%<br>4.20%                                | 5.53%<br>2.46%                       | 1521<br>861        | 1439<br>872                   | 1399<br>855        | 5.01%<br>1.62%        | 5.00%                               | 4.97%                      |
| MAE      |      | IMEAN<br>UPCC<br>IPCC<br>WSRec<br>UMEAN<br>IMEAN<br>UPCC                     | 903<br>1148<br>768<br><b>758</b><br>1585<br>866         | 901<br>877<br>736<br><b>700</b>                            | 907<br>810<br>736                               | 2.40%<br>4.85%<br>2.24%                 | 2.36%<br>4.20%                                         | 2.46%                                | 861                | 872                           | 855                | 1.62%                 |                                     |                            |
| MAE      |      | UPCC<br>IPCC<br>WSRec<br>UMEAN<br>IMEAN<br>UPCC                              | 1148<br>768<br><b>758</b><br>1585<br>866                | 877<br>736<br><b>700</b>                                   | 810<br>736                                      | 4.85%<br>2.24%                          | 4.20%                                                  |                                      |                    |                               |                    |                       | 1.58%                               | 1.68%                      |
| MAE      |      | IPCC<br>WSRec<br>UMEAN<br>IMEAN<br>UPCC                                      | 768<br>758<br>1585<br>866                               | 736<br>700                                                 | 736                                             | 2.24%                                   |                                                        | 3.86%                                | 0.00               |                               |                    |                       |                                     |                            |
| MAE      |      | WSRec<br>UMEAN<br>IMEAN<br>UPCC                                              | 758<br>1585<br>866                                      | 700                                                        |                                                 |                                         | 2 16%                                                  |                                      | 968                | 782                           | 684                | 4.11%                 | 3.47%                               | 3.28%                      |
| MAE      | 20%  | UMEAN<br>IMEAN<br>UPCC                                                       | 1585<br>866                                             |                                                            | 672                                             |                                         | 2.10.70                                                | 2.21%                                | 585                | 596                           | 605                | 1.39%                 | 1.33%                               | 1.42%                      |
| MAE      | 20%  | IMEAN<br>UPCC                                                                | 866                                                     | 1.240                                                      |                                                 | 2.21%                                   | 2.08%                                                  | 2.08%                                | 560                | 533                           | 500                | 1.36%                 | 1.26%                               | 1.24%                      |
|          | 20%  | UPCC                                                                         |                                                         |                                                            | 1508                                            | 5.7470                                  | 5.55%                                                  | 5.51%                                | 1404               | 1410                          | 1390               | 3.2170                | 4.90%                               | 4.93 %                     |
|          | 20%  |                                                                              |                                                         | 859                                                        | 861                                             | 2.36%                                   | 2.34%                                                  | 2.29%                                | 833                | 837                           | 840                | 1.56%                 | 1.61%                               | 1.62%                      |
|          |      |                                                                              | 904                                                     | 722                                                        | 626                                             | 4.40%                                   | 3.43%                                                  | 2.85%                                | 794                | 626                           | 540                | 3.93%                 | 2.96%                               | 2.43%                      |
|          |      | IPCC                                                                         | 606                                                     | 610                                                        | 639                                             | 2.01%                                   | 1.98%                                                  | 1.98%                                | 479                | 509                           | 538                | 1.17%                 | 1.22%                               | 1.28%                      |
|          |      | WSRec                                                                        | 586                                                     | 551                                                        | 546                                             | 1.93%                                   | 1.80%                                                  | 1.70%                                | 445                | 428                           | 416                | 1.10%                 | 1.08%                               | 1.07%                      |
|          |      | UMEAN                                                                        | 1603                                                    | 1543                                                       | 1508                                            | 5.64%                                   | 5.58%                                                  | 5.56%                                | 1494               | 1430                          | 138/               | 5.12%                 | 4.98%                               | 4.93%                      |
|          |      | IMEAN                                                                        | 856                                                     | 854                                                        | 853                                             | 2.26%                                   | 2.29%                                                  | 2.30%                                | 823                | 823                           | 827                | 1.56%                 | 1.58%                               | 1.58%                      |
|          | 30%  | UPCC<br>IPCC                                                                 | 915<br>563                                              | 671<br>566                                                 | 572<br>602                                      | 4.25%<br>1.84%                          | 3.25%<br>1.83%                                         | 2.58%                                | 803<br>439         | 576<br>467                    | 491<br>507         | 3.76%<br>1.10%        | 2.86%<br>1.12%                      | 2.06%<br>1.17%             |
|          |      | WSRec                                                                        | 538                                                     | 504                                                        | 499                                             | 1.78%                                   | 1.69%                                                  | 1.86%<br>1.63%                       | 439                | 385                           | 378                | 1.05%                 | 1.00%                               | 0.98%                      |
|          |      |                                                                              |                                                         |                                                            |                                                 |                                         |                                                        |                                      |                    |                               |                    |                       |                                     |                            |
|          |      | UMEAN                                                                        | 3339                                                    | 3250                                                       | 3192                                            | 15.47%                                  | 15.04%                                                 | 14.74%                               | 3190               | 3109                          | 3069               | 14.75%                | 14.42%                              | 13.99%                     |
|          |      | IMEAN                                                                        | 1441                                                    | 1436                                                       | 1442                                            | 5.61%                                   | 5.58%                                                  | 5.85%                                | 1112               | 1140                          | 1107               | 3.27%                 | 3.26%                               | 3.38%                      |
|          | 10%  | UPCC                                                                         | 2036                                                    | 1455<br>1288                                               | 1335<br>1278                                    | 10.84%                                  | 7.51%                                                  | 6.55%<br>5.53%                       | 1585<br>850        | 1174<br>871                   | 1005               | 8.86%<br>2.87%        | 5.42%<br>2.82%                      | 4.96%                      |
|          |      | WSRec                                                                        | 1329                                                    | 1247                                                       | 1197                                            | 5.31%                                   | 5.12%                                                  | 5.11%                                | 819                | 789                           | 734                | 2.80%                 | 2.61%                               | 2.61%                      |
|          |      | UMEAN                                                                        | 3332                                                    | 3240                                                       | 3211                                            | 15.49%                                  | 15.05%                                                 | 14.80%                               | 3190               | 3124                          | 3062               | 14.72%                | 14.24%                              | 14.07%                     |
|          |      | IMEAN                                                                        | 1269                                                    | 1252                                                       | 1257                                            | 4.67%                                   | 4.62%                                                  | 4.54%                                | 997                | 1001                          | 1002               | 2.53%                 | 2.61%                               | 2.63%                      |
| RMSE     | 20%  | UPCC                                                                         | 1356                                                    | 1128                                                       | 1019                                            | 8.07%                                   | 5.31%                                                  | 4.58%                                | 1028               | 837                           | 730                | 7.35%                 | 4.20%                               | 3.24%                      |
| NNISE    | 20 % | IPCC                                                                         | 1020                                                    | 1016                                                       | 1056                                            | 4.15%                                   | 4.13%                                                  | 4 12%                                | 664                | 700                           | 731                | 2.00%                 | 2.09%                               | 2 19%                      |
|          |      | WSRec                                                                        | 997                                                     | 946                                                        | 937                                             | 4.04%                                   | 3.83%                                                  | 3.67%                                | 620                | 598                           | 581                | 1.88%                 | 1.84%                               | 1.83%                      |
|          |      | UMEAN                                                                        | 3336                                                    | 3246                                                       | 3197                                            | 15.49%                                  | 15.00%                                                 | 14.68%                               | 3178               | 3103                          | 3086               | 14.68%                | 14.25%                              | 14.07%                     |
|          |      | IMEAN                                                                        | 1207                                                    | 1209                                                       | 1203                                            | 4.21%                                   | 4.23%                                                  | 4.22%                                | 955                | 954                           | 957                | 2.28%                 | 2.29%                               | 2.28%                      |
|          |      | UPCC                                                                         | 1267                                                    | 1035                                                       | 924                                             | 7.72%                                   | 5.09%                                                  | 4.15%                                | 988                | 741                           | 644                | 6.49%                 | 3.90%                               | 2.66%                      |
|          | 30%  | WSRec                                                                        | 950<br>921                                              | 957<br>884                                                 | 995<br>869                                      | 3.72%                                   | 3.71%                                                  | 3.75%                                | 611<br>564         | 642<br>540                    | 685<br>528         | 1.73%                 | 1 74%<br>1.55%                      | 1.81%                      |

Drawbacks of Neighborhood-based Approach

- Computational complexity  $O(mn+n^2)$
- Matrix sparsity problem
  - -Not easy to find similar users (or similar items)



Approach 2: Model-based Approach

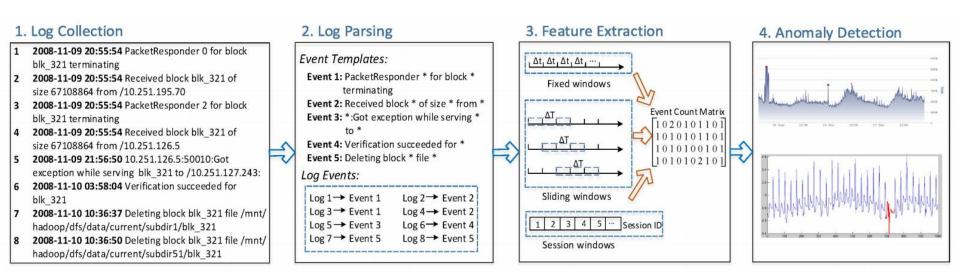
• Each row of  $U^T$  is a set of feature factors, and each column of V is a set of linear predictors  $\Rightarrow$  Matrix Factorization (MF)

|       | 5-    | 5.         | S.                    | <b>S</b> .            | S -                   | 5                     |                |                     |       |      | The error between the actual                                       |
|-------|-------|------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|---------------------|-------|------|--------------------------------------------------------------------|
|       |       | <u>s</u> 2 | <i>S</i> <sub>3</sub> | <i>s</i> <sub>4</sub> | <i>s</i> <sub>5</sub> | <i>s</i> <sub>6</sub> |                |                     |       |      | Value and the prediction                                           |
| $u_1$ | 0, 98 | 0.23       |                       | 0.22                  |                       |                       |                |                     |       |      | $1 \frac{m}{m} \frac{n}{m}$ D T a                                  |
| $u_2$ | 0.13  |            | 0.27                  |                       | 0.25                  |                       | $\min_{U,V} I$ | $\mathcal{C}(R, l)$ | (J,V) | =    | $\frac{1}{2}\sum_{i}\sum_{j}I_{ij}^{R}(R_{ij}-U_{i}^{T}V_{j})^{2}$ |
| $u_3$ |       | 0.37       |                       |                       | 0.36                  |                       | -              |                     |       |      | $\frac{2}{i=1} \frac{1}{j=1}$                                      |
| $u_4$ |       |            | 0.22                  | 0.22                  |                       | 0.34                  |                |                     |       | +    | $\frac{\lambda_U}{2} \ U\ _F^2 + \frac{\lambda_V}{2} \ V\ _F^2,$   |
| 0.32  | 0.15  | 0.31       | 0.33                  |                       | [0.73                 | 3 0.3                 | 5 0.31         | 0.26                | 0.32  | 0.42 | <b>Regularization terms</b>                                        |
| 0.23  | 0.15  | 0.26       | 0.28                  | $\sim$                | 0.6                   | 0.3                   | 1 0.27         | 0.22                | 0.28  | 0.36 |                                                                    |
| 0.30  |       | 0.24       | 0.34                  | X                     | 0.69                  | 9 0.3'                | 7 0.32         | 0.27                | 0.33  | 0.45 |                                                                    |
| 0.47  | 0.23  | 0.59       | 0.21                  |                       | 0.9                   | 5 0.40                | 0.42           | 0.35                | 0.41  | 0.54 |                                                                    |
|       | Ú     | Г          |                       |                       | -                     |                       |                | V                   |       | _    |                                                                    |

#### >NIMF: Neighborhood–Integrated Matrix Factorization

|         | $\dot{l_1}$ | $i_2$ | i <sub>3</sub> | <b>i</b> 4 | i <sub>5</sub> | i <sub>6</sub> |
|---------|-------------|-------|----------------|------------|----------------|----------------|
| $u_1$   | 0.5         | 1.2   |                | 0.3        |                | 0.4            |
| $u_2$   |             | 0.8   |                | 0.6        | 0.5            |                |
| $u_3$   | 0.4         |       | 0.3            |            | 0.9            |                |
| $u_4$   |             | 0.6   |                | 0.7        |                |                |
| $u_{5}$ | 0.5         |       | 0.7            |            |                | 0.3            |

(a) User-Item Matrix


 $\mathcal{L}(R, S, U, V) \qquad \text{User's own rating} \qquad \text{Rating due to similar users} \\ = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - (\alpha U_{i}^{T} V_{j}) + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j})^{2} \\ + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2}, \qquad S_{ik} = \frac{PCC(i, k)}{\sum_{k \in \mathcal{T}(i)} PCC(i, k)} \end{aligned}$ 

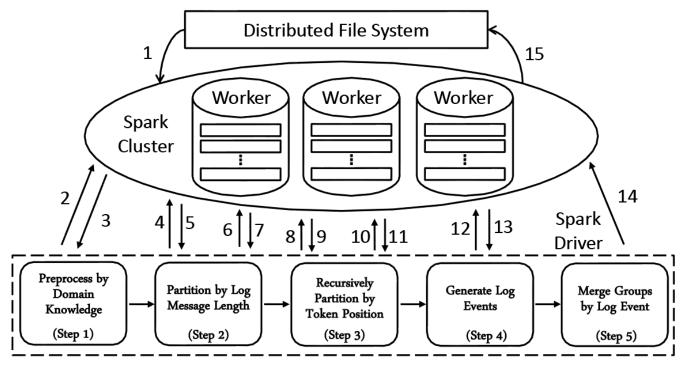
#### ➢Performance Comparison

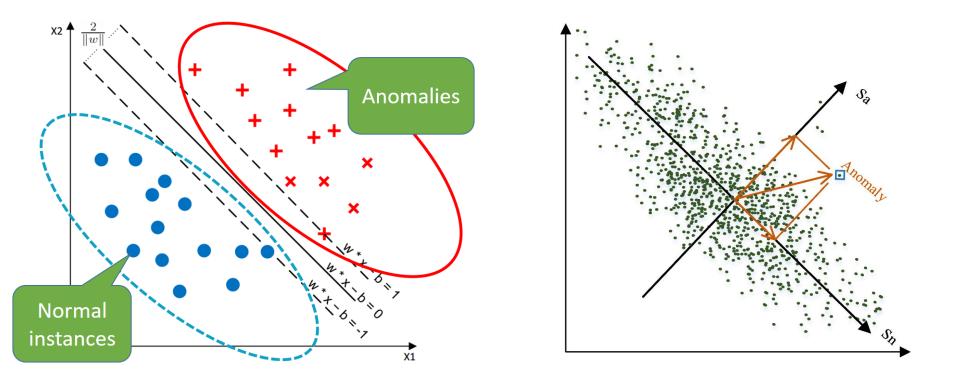
| Table 2: Performance Comparison (A Smaller MAE or RMSE Value Means a Better Performance) |         |           |          |           |                    |         |             |           |           |
|------------------------------------------------------------------------------------------|---------|-----------|----------|-----------|--------------------|---------|-------------|-----------|-----------|
| 0-8                                                                                      | Methods | Matrix De | nsity=5% | Matrix De | Matrix Density=10% |         | nsity = 15% | Matrix De | nsity=20% |
| $Q_{OS}$                                                                                 | Methods | MAE       | RMSE     | MAE       | RMSE               | MAE     | RMSE        | MAE       | RMSE      |
|                                                                                          | UMEAN   | 0.8785    | 1.8591   | 0.8783    | 1.8555             | 0.8768  | 1.8548      | 0.8747    | 1.8557    |
|                                                                                          | IMEAN   | 0.7015    | 1.5813   | 0.6918    | 1.5440             | 0.6867  | 1.5342      | 0.6818    | 1.5311    |
|                                                                                          | UPCC    | 0.6261    | 1.4078   | 0.5517    | 1.3151             | 0.5159  | 1.2680      | 0.4884    | 1.2334    |
| Response-time                                                                            | IPCC    | 0.6897    | 1.4296   | 0.5917    | 1.3268             | 0.5037  | 1.2552      | 0.4459    | 1.2095    |
| (0-20  s)                                                                                | WSRec   | 0.6234    | 1.4078   | 0.5365    | 1.3043             | 0.4965  | 1.2467      | 0.4407    | 1.2012    |
| (0-20 8)                                                                                 | NMF     | 0.6182    | 1.5746   | 0.6040    | 1.5494             | 0.5990  | 1.5345      | 0.5982    | 1.5331    |
|                                                                                          | PMF     | 0.5678    | 1.4735   | 0.4996    | 1.2866             | 0.4720  | 1.2163      | 0.4492    | 1.1828    |
|                                                                                          | NIMF    | 0.5514    | 1.4075   | 0.4854    | 1.2745             | 0.4534  | 1.1980      | 0.4357    | 1.1678    |
|                                                                                          | UMEAN   | 54.0084   | 110.2821 | 53.6700   | 110.2977           | 53.8792 | 110.1751    | 53.7114   | 110.1708  |
|                                                                                          | IMEAN   | 27.3558   | 66.6344  | 26.8318   | 64.7674            | 26.6239 | 64.3986     | 26.6364   | 64.1082   |
|                                                                                          | UPCC    | 26.1230   | 61.6108  | 21.2695   | 54.3701            | 18.7455 | 50.7768     | 17.5546   | 48.2621   |
| Throughput                                                                               | IPCC    | 29.2651   | 64.2285  | 27.3993   | 60.0825            | 26.4319 | 57.8593     | 25.0273   | 55.4970   |
| (0-1000  kbps)                                                                           | WSRec   | 25.8755   | 60.8685  | 19.9754   | 54.8761            | 17.5543 | 47.8235     | 16.0762   | 47.8749   |
| (0-1000 Kops)                                                                            | NMF     | 25.7529   | 65.8517  | 17.8411   | 53.9896            | 15.8939 | 51.7322     | 15.2516   | 48.6330   |
|                                                                                          | PMF     | 19.9034   | 54.0508  | 16.1755   | 46.4439            | 15.0956 | 43.7957     | 14.6694   | 42.4855   |
|                                                                                          | NIMF    | 17.9297   | 51.6573  | 16.0542   | 45.9409            | 14.4363 | 43.1596     | 13.7099   | 41.1689   |

# **Reliability Prediction of Web Services**

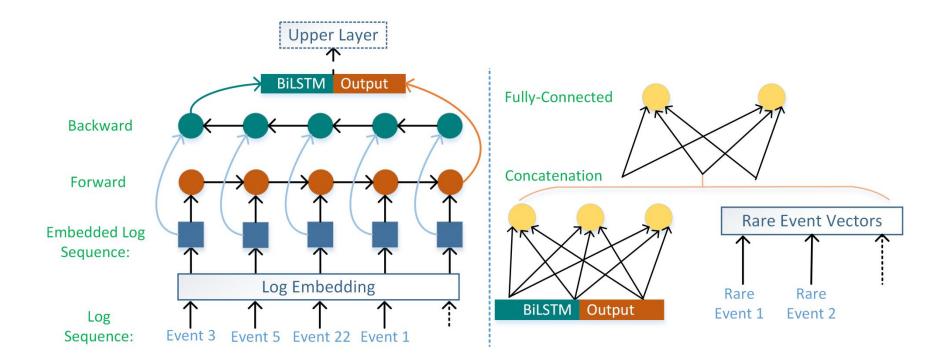
- Approach 1: Neighborhood-based approach to consider users
- Approach 2: Model-based approach to consider data sparsity
- Approach 3: Time-aware approach to consider temporal factor
- Approach 4: Network coordinate based approach to consider spatial factor
- Approach 5: Ranking-based approach to consider ranking




#### Log Analysis Framework


|        |                                                                                                                       | _         |                                                            |                                             |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
|        | Raw Log Mes                                                                                                           | sa        | ages                                                       |                                             |  |  |  |  |  |
| 1      | 2008-11-11 03:40:58 BLOCK* NameSystem.allo<br>_temporary/_task_200811101024_0010_m_00<br>00011.blk_904791815409399662 |           |                                                            |                                             |  |  |  |  |  |
| 2      | 2008-11-11 03:40:59 Receiving block blk 90479<br>10.251.43.210:55700 dest: /10.251.43.210:5001                        | 18<br>10  | 15409                                                      | 399662 src: /                               |  |  |  |  |  |
| 3      | <b>2008-11-11 03:41:01</b> Receiving block blk_90479 10.250.18.114:52231 dest: /10.250.18.114:5003                    |           | 15409                                                      | 399662 src: /                               |  |  |  |  |  |
| 4      | <b>2008-11-11 03:41:48</b> PacketResponder 0 for block blk_904791815409399662 terminating                             |           |                                                            |                                             |  |  |  |  |  |
| 5      | <b>2008-11-11 03:41:48</b> Received block blk_904791815409399662 of size 67108864 from /10.250.18.114                 |           |                                                            |                                             |  |  |  |  |  |
| 6      | <b>2008-11-11 03:41:48</b> PacketResponder 1 for block blk_904791815409399662 terminating                             |           |                                                            |                                             |  |  |  |  |  |
| 7      | <b>2008-11-11 03:41:48</b> Received block blk_904791815409399662 of size 67108864 from /10.251.43.210                 |           |                                                            |                                             |  |  |  |  |  |
| 8      | 2008-11-11 03:41:48 BLOCK* NameSystem.add<br>10.251.43.210:50010 is added to blk_90479181                             |           |                                                            |                                             |  |  |  |  |  |
| 9      | 2008-11-11 03:41:48 BLOCK* NameSystem.add<br>10.250.18.114:50010 is added to blk_90479181                             | Sto<br>54 | oredBlo<br>09399                                           | ock: blockMap updated:<br>662 size 67108864 |  |  |  |  |  |
| 10     | 2008-11-11 08:30:54 Verification succeeded for                                                                        |           |                                                            |                                             |  |  |  |  |  |
|        |                                                                                                                       |           |                                                            |                                             |  |  |  |  |  |
|        | Log Parsing                                                                                                           |           |                                                            |                                             |  |  |  |  |  |
|        | Log Events                                                                                                            | [         |                                                            | Structured Logs                             |  |  |  |  |  |
| Event1 | BLOCK* NameSystem.allocateBlock: *                                                                                    |           | 1 2008-11-11 03:40:58 Event<br>2 2008-11-11 03:40:59 Event |                                             |  |  |  |  |  |

| Event1 | BLOCK* NameSystem.allocateBlock: *        | 11 | 1  | 2008-11-11 03:40:58 Event1 |
|--------|-------------------------------------------|----|----|----------------------------|
| F      | Dessiving black * and * dest. *           |    | 2  | 2008-11-11 03:40:59 Event2 |
| Event2 | Receiving block * src: * dest: *          |    | 3  | 2008-11-11 03:41:01 Event2 |
| Event3 | PacketResponder * for block * terminating |    | 4  | 2008-11-11 03:41:48 Event3 |
|        |                                           |    | 5  | 2008-11-11 03:41:48 Event4 |
| Event4 | Received block * of size * from *         |    | 6  | 2008-11-11 03:41:48 Event3 |
| Event5 | BLOCK* NameSystem.addStoredBlock:         |    | 7  | 2008-11-11 03:41:48 Event4 |
|        | blockMap updated: * is added to * size *  |    | 8  | 2008-11-11 03:41:48 Event5 |
| Fund   |                                           |    | 9  | 2008-11-11 03:41:48 Event5 |
| Event6 | Verification succeeded for *              |    | 10 | 2008-11-11 08:30:54 Event6 |
|        |                                           |    |    |                            |


#### **Log Parsing**

- We design and implement a **parallel** log parser (namely POP) on top of Spark.
- It can process **200 million** lines of raw log messages within **7** min while keeping high accuracy.





Existing anomaly detection methods: SVM (left) and PCA (right)



#### **Our method: Deep Log Embedding based Anomaly Detection (D-Lead)**

#### loghub

A collection of system log datasets for massive log analysis

| log-ar      | nalysis | logs      | console-log | log-parsing | unstructured-logs |
|-------------|---------|-----------|-------------|-------------|-------------------|
| <b>★</b> 16 | ¥ 3     | Updated 2 | 23 days ago |             |                   |

#### LogAdvisor

Learning to Log: A framework for determining optimal logging points



#### logparser

logparser: A toolkit for automated log parsing



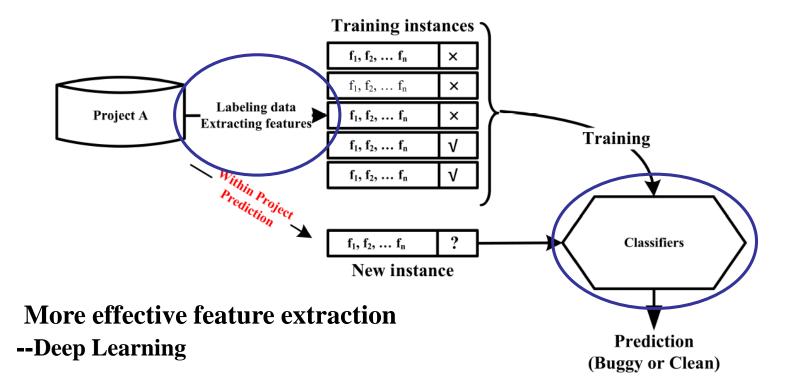
#### loglizer

loglizer: A log analysis toolkit for automated anomaly detection

 log-analysis
 log-management
 anomaly-detection
 unstructured-logs

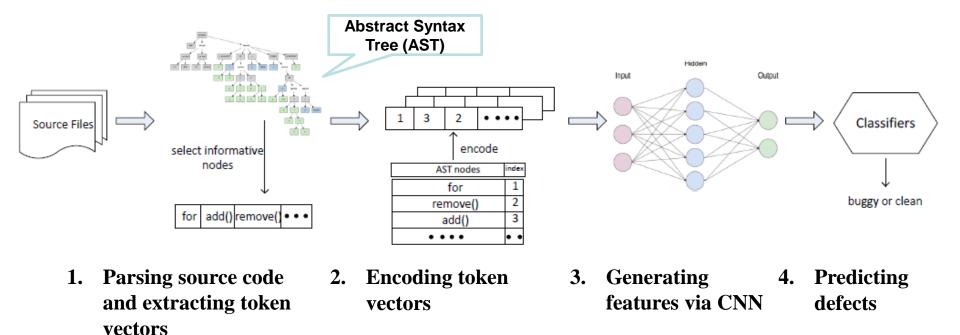
 ● Python
 ★ 33
 ※ 17
 ▲ MIT
 Updated on Sep 21




#### https://github.com/logpai

LogPAI

(Log Powered by AI)

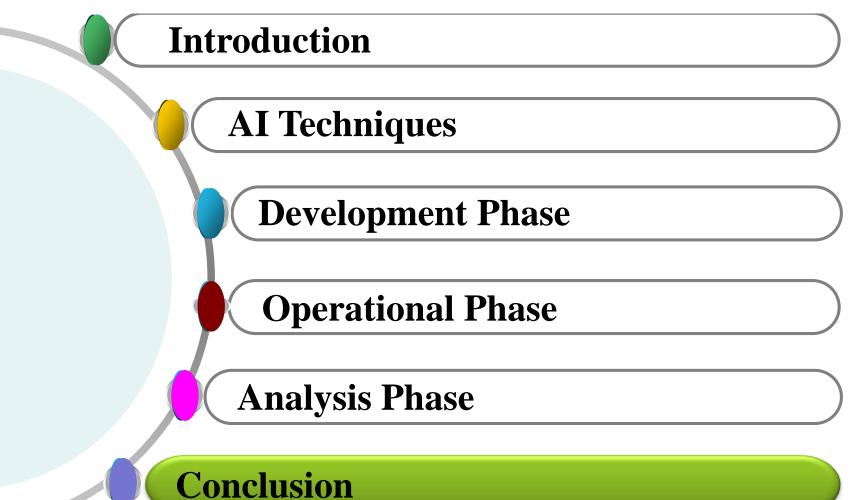

#### **Defect Prediction**

• Software defect prediction: build classifiers to predict code areas that potentially contain defects, based on code features.



#### **Defect Prediction**

#### □ The overall workflow of proposed DP-CNN




#### **Defect Prediction**

#### □ Performance on 8 open source projects

| Project                | Traditional | DBN   | DBN+  | CNN   | DP-CNN |
|------------------------|-------------|-------|-------|-------|--------|
| $\operatorname{camel}$ | 0.329       | 0.335 | 0.375 | 0.505 | 0.508  |
| jEdit                  | 0.573       | 0.480 | 0.549 | 0.631 | 0.580  |
| lucene                 | 0.618       | 0.758 | 0.761 | 0.761 | 0.761  |
| xalan                  | 0.627       | 0.681 | 0.681 | 0.676 | 0.696  |
| xerces                 | 0.273       | 0.261 | 0.276 | 0.311 | 0.374  |
| synapse                | 0.500       | 0.503 | 0.486 | 0.512 | 0.556  |
| poi                    | 0.748       | 0.780 | 0.782 | 0.778 | 0.784  |
| eclipse                | 0.273       | 0.290 | 0.349 | 0.337 | 0.367  |
| Average                | 0.493       | 0.511 | 0.532 | 0.564 | 0.578  |





#### Conclusion

- □ Before AI becomes conscientious, its intelligence is still artificial.
- □ Software is eating the world, and AI is eating the software. ---Nvidia CEO Jensen Huang
- □ AI may replace many people's job, but it will certainly enhance software engineers to do a better job.
- □ Our goal is to employ AI to provide more efficient and effective software development, operation, and analysis.
- The current achievement is just a small step ahead in a largely unexplored area in existing software engineering research paradigms.

**Thank You!**