
AI Techniques in Software Engineering

Paradigm

Computer Science & Engineering Department

The Chinese University of Hong Kong

Rung-Tsong Michael LYU

ICPE 2018

Berlin

April 12, 2018

2

Introduction

AI Techniques

Operational Phase

Analysis Phase

香港中文大学
Chinese University of Hong Kong

Development Phase

Conclusion

A Brief History of the IT World

ENIAC

Birth of Internet

The MITS Altair

Apple II

IBM Desktop PC

Time Magazine

Person of the Year

Apple Macintosh

Birth of WWW

Birth of XML

Birth of Web 2.0

Attention

Age

Time Magazine

Person of the Year

3

Birth of iPhone

1750 1945 1969 1975 1981 1983 1984 1989 1996 2004 2006

Industrial

Revolution

Information

Age
WWW

Age

Internet

Age

2007

A Brief History of AI Development

Representation

Language of Logic
Birth of “AI” Basic Structure

Symbolics Machine

Deep Blue vs

Kasparov

The Age of AI

Go Game

1956 1965 1974 Mid 80’s 1990-2000 2010 2016 Now

Artificial

Intelligence

Logic

Programming

Big DataExpert

Systems

Neural

Network
Alpha Go beats

Lee Sedol

Breakthrough IBM Watson

wins on Jeopardy

2011

Turing test

1950

What is

“Intelligence”?
IBM’s Watson

4

What is Artificial Intelligence (AI)

Human Intelligence

learning reasoning

perceiving

understanding

feeling

Artificial Intelligence

Artificial Intelligence is the science and

engineering of making intelligent machines

Turing Test (1950)

Boston Dynamics: Atlas

…

5

• Search space is huge: ≈ 10360

What Impact Has AlphaGo Achieved?

6

7

Reborn of Artificial Intelligence

Face recognition

Speech recognition

Natural language

processing

Intelligent systems

(e.g., self-driving)

AI will be

everywhere

8

Software Engineering with AI

• Software Engineering with Artificial Intelligence:

Employing Machine Learning (ML) techniques to assist in

labor-intensive and error-prone tasks.

9

Software Engineering with Intelligence

Development

Operation

Analysis

Source

codes

User

behavior

data

QoS

values

User

reviews

System

logs

Apply ML

Techniques

Logging

statements

10

Introduction

AI Techniques

Operational Phase

Analysis Phase

香港中文大学
Chinese University of Hong Kong

Development Phase

Conclusion

11

Artificial Intelligence for Software Engineering

Development

Operational
Analysis

Machine

Learning

12

Artificial Intelligence for Software Engineering

Development

Operational

Analysis

Machine

Learning

Code completion

Learning to log
RNN with Attention

Classification

App issues prioritizing

Emerging issues detection

Service reliability prediction

Log Management

Classification,

Topic modeling,

Matrix factorization,

Classification,

Parallel computing platform

Tasks Techniques

Machine Learning Framework

 General framework:

 Iterative Update:

Unchanged Data Frequently updated

Parameter

Very Big: cannot be

handled with single

PC

Gradient Descent:
Computed in Distributed
Environment

13

Matrix Factorization

R  UTV

R
v1 v2 v3 v4 v5 v6 v7 v8 v1 v2 v3 v4 v5 v6 v7 v8

14

Low-Rank Matrix Factorization

• Objective function

Ui ,Vj : low dimension column vectors to represent user/item preferences.

Regularization termsMain Objective

15

16

The Growing of Deep Learning

Deep learning trends at Google. Source: SIGMOD/Jeff Dean

more
computeAccuracy

Scale (data size, model

size)

neural

networks

other ML

approaches

1980s and
1990s

Deep Learning Is Neural Networks

17

more
computeAccuracy

Scale (data size, model

size)

neural

networks

other ML

approaches

Now

Deep Learning Is Neural Networks

18

19

Deep Learning

Feedforward Neural Networks (FFN)

y = w · x + b

20

Deep Learning

Convolutional Neural Networks (CNN)

“cat”

● A powerful class of machine learning model
● Modern reincarnation of artificial neural networks
● Collection of simple, trainable mathematical functions

● Compatible with many variants of machine learning

21

What is Deep Learning?

“cat”

● Loosely based on
(what little) we know
about thebrain

What is Deep Learning?

22

How Do Neural Networks Work?

23

see
image

cat

clickif cat

0.1sec:
neurons fire

only 10 times!

How Do Neural Networks Work?

Anything humans can do in 0.1 sec, the right

big 10-layer network can do too
24

Combining Vision with Robotics

“Deep Learning for Robots:

Learning from Large-Scale

Interaction”, Google Research

Blog, March, 2016

“Learning Hand-Eye

Coordination for Robotic

Grasping with Deep Learning

and Large-Scale Data Collection”,

Sergey Levine, Peter Pastor, Alex

Krizhevsky, & Deirdre Quillen,

Arxiv, arxiv.org/abs/1603.02199

Computers Can Now See

25

http://googleresearch.blogspot.kr/2016/03/deep-learning-for-robots-learning-from.html
http://googleresearch.blogspot.kr/2016/03/deep-learning-for-robots-learning-from.html
http://arxiv.org/abs/1603.02199

What Can Neural Networks Compute?

Human perception is very fast (0.1 second)

• Recognize objects (“see”)

• Recognize speech (“hear”)

• Recognize emotion

• Instantly see how to solve some problems

• And many more!

These can all be computed by Neural

Networks.
26

27

Deep Learning

Recurrent Neural Networks (RNN)

A standard RNN An LSTM network

28

Deep Learning

Sequence-to-Sequence Models

29

Deep Learning Platforms

30

Introduction

AI Techniques

Operational Phase

Analysis Phase

香港中文大学
Chinese University of Hong Kong

Development Phase

Conclusion

Code completion

Learning to log

31

Development: Code Completion

• Code completion

• Intelligent code completion is essential for software

engineers

• Programming languages: static vs dynamic

• Out-of-Vocabulary (OoV) problem: many words are sparse,

e.g. user-defined identifiers

32

Development: Code Completion

• Abstract syntax tree (AST)

• Locally repeated terms

A Python program and its corresponding abstract syntax tree

33

Development: Code Completion

• Contributions:

– Pointer mixture network for better predicting OoV words

– Effectiveness of attention mechanism

– Significant improvements in code completion task

• Pointer mixture network

– Global RNN component

– Local pointer component

– Controller

34

Development: Code Completion

• Case study

• Pointer Mixture Network successfully point to employee_id,

which is an OoV word

35

Development: Code Completion

• Dataset

– JavaScript (JS) and Python (PY)

• Accuracies on next value prediction with different vocabulary sizes

36

Development: Code Completion

• Comparisons against the state-of-the-arts

– Note that Pointer Mixture Network can be only used for predicting VALUE

node (TYPE node has small size of vocabulary)

• Observations: our models outperform the state-of-the-art in almost all cases

37

Development: Learning to Log

• Challenges of logging

– Logging too little
• Miss valuable runtime information

• Increase the difficulty for problem diagnosis

– Logging too much

• Additional cost of code dev. & maintenance

• Runtime overhead

• Producing a lot of trivial logs

• Storage overhead

38

Development: Learning to Log

• What is logging?

– A common programming practice to record runtime system information

– Logging functions: e.g., printf, cout, writeline, etc.

• Logs are crucial for system management

– Various tasks of log analysis

• Anomaly detection, failure diagnosis, etc.

– The only data available for diagnosing production failures

Logging is important!

39

Development: Learning to Log

• Focused snippets: potential error sites

– Exception snippets: try-catch blocks

– Return-value-check snippets: function-return errors

try {
method(…);

}
catch (IOException) {

log(…);
…

}

var res = method(…);
if (res == null) {

log(…);
…

}

Example 1 Example 2

40

Development: Learning to Log

• Framework of learning to log

– Similar to other machine learning applications (e.g., defect prediction)

41

Development: Learning to Log

• Structural features: structural info of code

private int LoadRulesFromAssembly (string assembly, ...){
//Code in Setting
try {

AssemblyName aname = AssemblyName.
GetAssemblyName(Path.GetFullPath (assembly));
Assembly a = Assembly.Load (aname);

}
catch (FileNotFoundException) {

Console.Error.WriteLine ("Could not load rules
From assembly '{0}'.", assembly); return 0; }
... }

}

Exception Type:
0.39 (System.IO.FileNotFoundException)

Containing method:
Gendarme.Settings.LoadRulesFromAssembly

Invoked methods:
System.IO.Path.GetFullPath,
System.Reflection.AssemblyName.GetAssemblyName,
System.Reflection.Assembly.Load

/* A code example taken from MonoDevelop (v.4.3.3), at file: * main\external\mono-tools\gendarme\console\Settings.cs,
* line: 116. Some lines are omitted for ease of presentation. */

0

0.2

0.4

0.6

0.8

1

42

Development: Learning to Log

• Within-project evaluation

– Random: randomly logging (as a new developer)

– ErrLog [Yuan et al., OSDI’12]: conservatively logging all focused snippets

– LogAdvisor: 0.846 ~ 0.934 accuracy achieved

0

0.2

0.4

0.6

0.8

1

Random

ErrLog

LogAdvisor

Exception snippets Return-value-check snippets

46

Introduction

AI Techniques

Operational Phase

Analysis Phase

香港中文大学
Chinese University of Hong Kong

Development Phase

Conclusion

App issues prioritizing

Emerging issues detection

47

Operation: App Issues Prioritizing

• User reviews are valuable source for pinpointing emerging

issues for app development.

• Capturing user-concerned issues and tracking their trends

2,200,000 apps2,800,000 apps 669,000 apps

Changelog

48

①Data Crawling ②Preprocessing ③Filtering

A. Data Extraction

④Phrase Generation ⑤Topic Grouping

B. App Issue Generation

⑥Issue

Prioritizing

C. Visualization and Issue Analysis

1.Call quality
2.Free stickers
3.Galaxy tab
4. …..

⑦Visualization ⑧Issue Analysis

Framework of PAID

Operation: App Issues Prioritizing

49

App # 37

Review # 2,089,737

Time Period 10 months

ID Title Review Date Stars Version

1 Crash
Like it cause it doesn’t crash on

androids

2014-11-

09T08:55:47
5 15.0.0.15.13

2 Rubbish

When I try to connect with

Mobile Network Package, this

don't work and giving

"Connecting.. Problem".

2014-11-

12T18:32:25 1 15.0.0.15.10

Google Play Crawler

Operation: App Issues Prioritizing

50

Rank phrases for each topic by:

▪ Semantic aspect:
KL-Divergence

▪ Sentiment aspect:

▪ Total score:

Based on topic modeling, each

topic is labeled with one phrase.

Topic Labeling Process:

Operation: App Issues Prioritizing

51The Themeriver of Viber.

Operation: App Issues Prioritizing

52

The Top Three Reviews Related to “Activation Code”

Rank top reviews for each topic:

Operation: App Issues Prioritizing

Operation: Emerging Issues Detection

R  UTV

53

Number of Privacy Related Reviews in Facebook

during July 2013 to April 2015

IDEA

54

 Automatic tool for app review analysis

 Discovering emerging issues dynamically

 Comprehensive issue interpretation

 Visualizing issue progression over versions

IDentifying Emerging Issues from App Reviews

Overall Framework

55

Online Topic Modeling

56

Emerging Issue Detection

57

Anomaly Detection - Jensen-Shannon Divergence

𝜷𝟏

𝚽𝟏

Reviews
Version 1

𝜷𝟐

𝚽𝟐

Reviews
Version 2

𝜷𝟑

𝚽𝟑

Reviews
Version 3

𝜷𝟒

𝚽𝟒

Reviews
Version 4

…

Experimental Result

58https://remine-lab.github.io/

https://remine-lab.github.io/

59

Introduction

AI Techniques

Operational Phase

Analysis Phase

香港中文大学
Chinese University of Hong Kong

Development Phase

Conclusion

Service reliability prediction

Log Management

Software Reliability Prediction: Small

Data Modeling

𝑹𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝑹 𝒕 = 𝒆− 𝟎
𝒕 𝒙 𝒅𝒙

Present

Present

Objective

Additional Time

Execution Time t

Failure
Intensity

(t)

Total Failures

61

Approach 1: Neighborhood-based

• Key idea: Using past usage

experiences of similar users.

• Issue: How to calculate user

similarity?

Service user 1 in Asia

Unreliable

Web service

in US

Service user 2 in US

Reliable

Service-Oriented System

?

Reliability is extended to Quality-of-Service (QoS)

Analysis: Service Reliability Prediction

62

Similarity Computation

• User-item matrix: M× N, each entry is the failure probability of a Web service

• Pearson Correlation Coefficient (PCC)

?0.5

𝑤𝑠1 𝑤𝑠2 𝑤𝑠3 𝑤𝑠4 𝑤𝑠5 𝑤𝑠6

Analysis: Service Reliability Prediction

63

WSRec: Hybrid Prediction Approach

• Similar users + Similar Web services

UPCC

IPCC

Analysis: Service Reliability Prediction

64

Performance Comparison

Analysis: Service Reliability Prediction

65

Drawbacks of Neighborhood-based Approach

• Computational complexity

• Matrix sparsity problem

–Not easy to find similar users (or similar items)

Analysis: Service Reliability Prediction

66

Approach 2: Model-based Approach

• Each row of UT is a set of feature factors, and each column of V is a set of
linear predictors  Matrix Factorization (MF)

s1 s2 s3 s4 s5 s6
The error between the actual

Value and the prediction

Regularization terms

UT V

Analysis: Service Reliability Prediction

67

NIMF: Neighborhood–Integrated Matrix Factorization

User’s own rating Rating due to similar users

Analysis: Service Reliability Prediction

68

Performance Comparison

Analysis: Service Reliability Prediction

69

Reliability Prediction of Web Services

• Approach 1: Neighborhood-based approach – to consider users

• Approach 2: Model-based approach – to consider data sparsity

• Approach 3: Time-aware approach – to consider temporal factor

• Approach 4: Network coordinate based approach – to consider

spatial factor

• Approach 5: Ranking-based approach – to consider ranking

70

Analysis: Log Management

Log Analysis Framework

71Log Parsing

Analysis: Log Management

72

• We design and implement a parallel log parser (namely POP) on top of Spark.

• It can process 200 million lines of raw log messages within 7 min while keeping

high accuracy.

Analysis: Log Management

73

Analysis: Log Management

Existing anomaly detection methods: SVM (left) and PCA (right)

74

Our method: Deep Log Embedding based Anomaly Detection (D-Lead)

Analysis: Log Management

75

LogPAI

(Log Powered by AI)

https://github.com/logpai

Analysis: Log Management

https://github.com/logpai

76

Defect Prediction

• Software defect prediction: build classifiers to predict code

areas that potentially contain defects, based on code features.

 More effective feature extraction

--Deep Learning

77

Defect Prediction

 The overall workflow of proposed DP-CNN

Abstract Syntax

Tree (AST)

1. Parsing source code

and extracting token

vectors

2. Encoding token

vectors

4. Predicting

defects

3. Generating

features via CNN

78

Defect Prediction

 Performance on 8 open source projects

79

Introduction

AI Techniques

Operational Phase

Analysis Phase

香港中文大学
Chinese University of Hong Kong

Development Phase

Conclusion

80

Conclusion

 Before AI becomes conscientious, its intelligence is still

artificial.

 Software is eating the world, and AI is eating the software.

---Nvidia CEO Jensen Huang

 AI may replace many people’s job, but it will certainly

enhance software engineers to do a better job.

 Our goal is to employ AI to provide more efficient and

effective software development, operation, and analysis.

 The current achievement is just a small step ahead in a

largely unexplored area in existing software engineering

research paradigms.

Thank You!

81

