.
& Department of

i—.omputer f:cience & &ngineering

THEMRAERIAZELR
ICPE 2018
Berlin
April 12, 2018

Al Techniques in Software Engineering
Paradigm

Rung-Tsong Michael LYU

Computer Science & Engineering Department
The Chinese University of Hong Kong



SRS
Chinese Univensity of Hong Koy

Al Techniques

(Development Phase

C Operational Phase

(" Analysis Phase

@ conclusion

A D U




A Brief History of the I'T World

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Early Middle Ages Late Middle Ages
Medieval Age

Enlightenment Age of Liberalism
The Reformation Age of Revolution
High Middle Ages Renaissance Wolrd At War and Interwar Years

The Modern World

<7xml version="1.8"
<quiz>

<question>

who was the forty-second
president of the U.S.A.7
</question>

<Answer>

william Jefferson Clinton
</answer>

</quiz>

- . . Time Ma
Birth of Internet  IBM Desktop PC  Apple Macintosh Birth of XML Person of the Year

1750 1945 1969 1975 1981 1983 1984 1989 1996 2004 2006 2007
Industrial  Information  Internet WWW Attention
Revolution  Age Age Age Age

The MITS Altair Time Magazine . . . .
Birth of iPh
Apple 11 Person of the Year Birth of WWW  Birth of Web 2.0 irth of IPhone




A Brief History of Al Development

P TERFRALIZING
wmmewexx&h‘” *fwr

\u“ " mt:ml"‘

\(
( f*‘“‘c rfx ‘% o,

;(t'I\ /\l‘?w Mlsm fe?‘/u

“iS'ﬁ” ﬁ

’%

ALLSYS TEMS GO

Birth of “AI” Representation . Basic Structure Deep Blue vs Go Game
Language of Logic Kasparov
1950 1956 1965 1974 Mid 80’s 1990-2000 2010 2011 2016 Now
Turing test  Artificial Logic Expert Big Data IBM Watson Alpha Go beat
Intelligence Programming Systems wins on Jeopardy Lez Saedoc: e The Age Of AI

CANA
COMPUTER
TALK I.IKE A

» $3 600 I 7 g
| F
WATSON

HUMAN Lo

Robert De Niro ¥ =
Chazz Palminteri
Joe Pesci

4°/o

1 4%

i

Symbolics Machine IBM’s Watson

What is
“Intelligence”?



What is Artificial Intelligence (Al)

Human Intelligence Artificial Intelligence

Artificial Intelligence is the science and
engineering of making intelligent machines

G Machine Z

7
l\.%

Person X

Person A

understanding

Boston Dynamics: Atlas



What Impact Has AlphaGo Achieved?

« Search space is huge: =~ 103¢°



Reborn of Artificial Intelligence

Face recognition

Speech recognition

Al will be
everywhere

S

Natural language
processing

Intelligent systems
(e.g., self-driving)




Software Engineering with Al

 Software Engineering with Artificial Intelligence:

Employing Machine Learning (ML) technigues to assist in
labor-intensive and error-prone tasks.




Software Engineering with Intelligence

-

|:> Source | Logging
codes | statements

User - L AppIyML
behavio Techniques

) | &S
values _ |

Development

Operation

Analysis



FREAKRE
Chinese University of Hong Koag

.C Introduction )

(Development Phase

C Operational Phase

(" Analysis Phase

@ conclusion

o




Artificial Intelligence for Software Engineering

Development

Machine
Learning

b Operational

Analysis

11



Artificial Intelligence for Software Engineering

Tasks Techniques
Code completion RNN with Attention
Learning to log Classification
Learning

App issues prioritizing Classification,

Emerging issues detection Topic modeling,
Operational

Service reliability prediction Matrix factorization,

Log Management Classification,

: Parallel computing platform

Analysis PUting b




Machine Learning Framework

7 General framework: ~ ~
argminT'({x,,,}14:6) +'¥(6)

AN

Unchanged Data Frequently updated

Parameter
0 Iterative Update: \ /‘
—714+] —1 Xer);Fig: c_ar?n.ot b|e
andled with single
9 — 9 AfQ(D) PC ]

N\

Gradient Descent:

Computed in Distributed
Environment

13



R

Matrix Factorization

Vi V, Vi V, Ve Vg Vo Vg
i 5 2 3 4
u, 4 3
u; | 4 2 2
Uy
g 5 1| 2 3
us | 4 | 3 2 3
~UTV
1.551.22 0.37 0.81 0.62 —0.01]
0.36 0.91 1.21 0.39 1.10 0.25
0.59 0.20 0.14 0.83 0.27 1.51

11.050.11 0.17 1.18 1.81

.39 1.33 —0.43 0.70 —0.90 0.68

0.40

9 .
w| 4 172 323930 2 4
u, 48 21 2726 4.7 38 24 49
w5 1| 2 34 315 46

[ 1.00 —0.05 —0.24
0.19 —0.86 —0.72
0.49 0.09 —0.05
—0.40 0.70 0.27

| 1.49 —1.00 0.06

0.26 1.28 0.54 —0.31 0.52]
0.05 0.68 0.02 —0.61 0.70
~0.62 0.12 0.08 0.02 1.60
~0.270.99 0.44 0.30 0.74

0.05 0.23 0.01 —0.36 0.80

14



Low-Rank Matrix Factorization

« Objective function

i=1 j=1

Main Objective Regularization terms

<
<
B | =

I;; is the indicator function that is equal to 1 if user
u; rated item v; and equal to 0 otherwise

U, V;:low dimension column vectors to represent user/item preferences.

15



The Growing of Deep Learning

Growing Use of Deep Learning at Google

# of directories containing model description files

1000

Unique project directories

Qr
QL
o5
Q7
L
Q7

<b,q Q

40,3‘04

<0 7

Deep learning trends at Google. Source: SIGMOD/Jeff Dean

Across many

products/areas:
Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
.. many others ...

16



Deep Learning Is Neural Networks

1980s and
1990s
4 more
Accuracy compute neural
— networks

other ML
approaches
[

Scale (data size, model
size)

17



Deep Learning Is Neural Networks

Now
& more
Accuracy compute neural
> networks
other ML
approaches
=

Scale (data size, model
size)

18



Deep Learning

Feedforward Neural Networks (FFN)

OO

X7\ %
Input . ‘ ‘ utputs
" ﬁf)&‘lﬁ‘
V"\V

19



Deep Learning

Convolutional Neural Networks (CNN)

layer m+1

1]1]1]o]o
ﬂ:-:l:l ]?:i 1:-:|:I 1 [} ﬂ'
layer m olol1[1]1
g(o0(1|1]|0
. 0(1(1|0]|0
layer m-1 O . mage Convolved
ag

Local Filter Feature

20



What is Deep Learning?

A powerful class of machine learning model

Modern reincarnation of artificial neural networks
Collection of simple, trainable mathematical functions
Compatible with many variants of machine learning

Q000
833068

21



What is Deep Learning?

e Loosely based on
(what little) we know
about the brain

10 mm

o~

T()—> “cat”

22



(

CAT

LABELED
PHOTOS

DOG

)

How Do Neural Networks Work?

QUTPUT

23



How Do Neural Networks Work?

0.1 sec:
neurons fire
only 10 times!

click if cat {b

Anything humans can do in 0.1 sec, the right
big 10-layer network can do too

24



Computers Can Now See

Combining Vision with Robotics

“Deep Learning for Robots:
Learning from Large-Scale
Interaction”, Google Research
Blog, March, 2016

“Learning Hand-Eye
Coordination for Robotic
Grasping with Deep Learning

Sergey Levine, Peter Pastor, Alex [FSSs
Krizhevsky, & Deirdre Quillen,
Arxiv, arxiv.org/abs/1603.02199

25


http://googleresearch.blogspot.kr/2016/03/deep-learning-for-robots-learning-from.html
http://googleresearch.blogspot.kr/2016/03/deep-learning-for-robots-learning-from.html
http://arxiv.org/abs/1603.02199

What Can Neural Networks Compute?

Human perception Is very fast (0.1 second)
* Recognize objects ("see”) W@
* Recognize speech  (“hear”) X

* Recognize emotion

* |Instantly see how to solve some problems

* And many more!

These can all be computed by Neural
Networks.

26



Deep Learning

Recurrent Neural Networks (RNN)

() ® )

SR O T N S B
LAl - [abfala A A ';£¢ A
6 & & o & & L I

A standard RNN An LSTM network

27



Deep Learning

Sequence-to-Sequence Models

ENCODER Reply

Yes, what's ___ up? <END>

BN 5ilIED

15

j I
o J  wJ ]

AEAREA

| I T I

Are you free tomorrow?

(thought vector )
J ) ;

<START>

Incoming Email DECODER

28



Deep Learning Platforms

t° PYTYRCH
TensorFlow amic
+ mxnet
¥ Microsoft O

CNTK Ca—ffe ,
Cafte

gy

Chainer theano

|
= 29



FREAKRE
Chinese University of Hong Koag

0( Introduction

(" Al Techniques

C Operational Phase

(" Analysis Phase

@ conclusion




Development: Code Completion

» Code completion

Aliases aliases = template.getClass().getAnnotation(Aliases.class);
if (aliases != null) {

d5
regl forr for (int i = expr.length=1; i >= @; 1i--)

instanceof expr instanceof SomeType 7 ((SomeType) expr). : null

¥ var T name = expr;
tnull f (expr ull)

pi (expression)

f for (int ] expr.length; i++)

1L if (expr == null)

field myField = expr;

turn turn expr;

f for (T ite llection)

ynch zed synch d (expr)

* Intelligent code completion is essential for software
engineers

» Programming languages: static vs dynamic

 Out-of-Vocabulary (OoV) problem: many words are sparse,
e.g. user-defined identifiers



Development: Code Completion

 Abstract syntax tree (AST)
* Locally repeated terms

— MNameStore: my_salary
— ASSIGN —
—— Num: 0

my salary = © _ — NameStore: i
Y y Parse e Nameload: range

for 1 in range(12): |::> Module mefemm  FOr —tfm (3|
my salary += 1
y_ y — MNameStore: my salary

print(my_salary) — Body M AugAssignAdd
Fatten@ — U 1

— UM 12

m— Print — Nameload: my salary

Module:EMPTY | Assign:EMPTY | NameStore:my_salary, Num:0 | For:EMPTY| e e e |Print:EMPTY| Nameload:my_salary

A Python program and its corresponding abstract syntax tree
32



Development: Code Completion

e Pointer mixture network

— Global RNN component
— Local pointer component
— Controller

» Contributions:
— Pointer mixture network for better predicting OoV words
— Effectiveness of attention mechanism
— Significant improvements in code completion task

Output distribution: V¢

RNN distribution: W¢

33



Development: Code Completion

 Case study

class Operator(Employee):
def _init_ (self, name, employee id):
super(Operator, self). init_ (name, Rank.OPERATOR)
self.employee_id = employee id

def dispatch_call(self, call, employees):
for employee in employees:
employee.take call(call)

def record path(self, base name):
return os.path.join(base name, str(self.__2__))

I]

§ :é*

S
N e

(a) Vanila ISTM

&

0.06

2
§

002
_ N e———
&
£
/

.:.é“ £ 4

cﬂ'f

(b) Attention-enhanced LSTM

(c) Pointer Mixture Network

 Pointer Mixture Network successfully point to employee id,

which 1s an OoV word




Development: Code Completion

Dataset
— JavaScript (JS) and Python (PY)

Table 1: Dataset Statistics
JS PY

Training Queries  10.7 % 107 6.2 % 107
Test Queries 53107 3.0 %107

Type Vocabulary 95 329

Value Vocabulary 2.6+ 10° 3.4 % 10°

Accuracies on next value prediction with different vocabulary sizes

Table 2: Accuracies on next value prediction with different vocabulary sizes. The out-of-vocabulary (OoV) rate denotes the
percentage of AST nodes whose value is beyond the global vocabulary.
JS PY
Vocabulary Size (OoV Rate) 1k (20%) 10k (11%) S0k (7%) 1k (24%) 10k (16%) S0k (11%)

Vanilla LSTM 69.9% 75.8% 78.6% 63.6% 66.3% 67.3%
Attention onhanced T STA .I’_nnrc". 71 JOL TR O AN NA [yl _0(-"'} 8 400 H_O QO
IPointer Mixture Network (ours) 73.2% 78.9 % 81.0% 66.4 % 68.9 % 70.1%

35



Development: Code Completion

« Comparisons against the state-of-the-arts

— Note that Pointer Mixture Network can be only used for predicting VALUE
node (TYPE node has small size of vocabulary)

Table 3: Comparisons against the state-of-the-arts. The upper part 1s the results from our experiments while the lower part 1s
the results from prior work. TYPE means next node type prediction and VALUE means next node value prediction.

JS PY
TYPE VALUE TYPE VALUE
Vanilla LSTM 81.1%  18.6%  79.3%  67.3%
Attention-enhanced LSTM (ours) 88.6% 80.6%  80.6%  69.8%
Pointer Mixture Network (ours) - 31.0% - 70.1%
LSTM (Liu et al. 2016) 84.8%  76.6% - -
Probabilistic Model (Raychev et al. 2016)  83.9%  829%  76.3%  69.2%

 Observations: our models outperform the state-of-the-art in almost all cases

36



Development: Learning to Log

 Challenges of logging
— Logging too little
 Miss valuable runtime information
* Increase the difficulty for problem diagnosis

User:

No log message printed.”

“Apache httpd cannot start.

—Logging too much
 Additional cost of code dev. & maintenance
» Runtime overhead
* Producing a lot of trivial logs
« Storage overhead

37



Development: Learning to Log

What is logging?

Log (level, “logging message %as ", variable):

— A common programming practice to record runtime system information
— Logging functions: e.g., printf, cout, writeline, etc.

Logs are crucial for system management

— Various tasks of log analysis
» Anomaly detection, failure diagnosis, etc.
— The only data available for diagnosing production failures

Logging is important!

38



Development: Learning to Log

« Focused snippets: potential error sites
— Exception snippets: try-catch blocks
— Return-value-check snippets: function-return errors

Example 1 Example 2
try { var res = method(...);
method(...); if (res == null) {
} log(...);
catch (IOException) {
log(...); }

39



Development: Learning to Log

« Framework of learning to log
— Similar to other machine learning applications (e.g., defect prediction)

NGepositories\

Fm:used C
Software Snippe

3—*.3&1«&

Logged Contextual

I
Instances Features

T
ﬂ Fes

ﬂ Ve

tyre
tgrs |:

Y ~\

Developer

Instan[:es Features

Unlngged Contextual X

(1)Instances  (2) Label

(3) Feature (4) Feature

Collection Identification Extraction  Selection
Logging Suggestion Tool (LogAdviosr)

Featyire |
\ Ve;gr I New /
Instance

: -

(5) Model
Construction

(6) Logging
Suggestmn

40



Development: Learning to Log

« Structural features: structural info of code

Error Type } Method3
' ~
Method1 Method4
\ J
[ Method?2 Method! |
Ccontaining } Method5

private int LoadRulesFromAssembly (string assembly, ...){
//Code in Setting

try {
AssemblyName aname = AssemblyName.
GetAssemblyName(Path.GetFullPath (assembly));
Assembly a = Assembly.Load (aname);

}

catch (FileNotFoundException) {
Console.Error.WriteLine ("Could not load rules
From assembly '{0}'.", assembly); return 0; }

e}
}

~ AN
s[ Method4 ]
s[  Method6 ]
Structural
Features

Exception Type:
0.39 (System.IO.FileNotFoundException)

Containing method:
Gendarme.Settings.LoadRulesFromAssembly

Invoked methods:

System.IO.Path.GetFullPath,
System.Reflection.AssemblyName.GetAssemblyName,
System.Reflection.Assembly.Load

/* A code example taken from MonoDevelop (v.4.3.3), at file: * main\external\mono-tools\gendarme\console\Settings.cs,

* line: 116. Some lines are omitted for ease of presentation. */

41



Development: Learning to Log

« Within-project evaluation
— Random: randomly logging (as a new developer)
— ErrLog [Yuan et al., OSDI’12]: conservatively logging all focused snippets
— LogAdvisor: 0.846 ~ 0.934 accuracy achieved

Exception snippets Return-value-check snippets
1 —
0.8 -
m Random 0.6 -
® ErrLog 0.4
02 -
® LogAdvisor 0 -

O
sy oY &f




FREAAKE

Chinese University of Houg Roug
0( Introduction )
(Al Techniques )
(' Development Phase )

(" Analysis Phase

@ conclusion ).




Operation: App Issues Prioritizing

User reviews are valuable source for pinpointing emerging
Issues for app development.

Capturing user-concerned issues and tracking their trends

2,800,000 apps 2,200,000 apps 669,000 apps

~— *hw
Getting stupid Not sure what you've
done but now | get a folder called

commondir and it wants to clean it and Coogleplay
says its safe to delete, its 12gb and that
12 gb is over half my internal storage
son that must be my apps and its\

saying safe to delete? \ Changelog

o o What's New
59.8
o RRRR \Optimized Photo Manager -
. Easier than ever to manage photos and save space
Love it Great app. But only one problem. 2. Added anti-intruder feature in AppLock to protect your privacy -
| had Some problem with my screen and —» Someone who tries to break into your phone will have their picture
did a wrong pattern and it has taken my +— snapped
photos. Plz let me know how do | delete 3. Various other improvements

those “intruder selfie’s”.

47



Operation: App Issues Prioritizing

Framework of PAID

9T
%*@—)

! @Data Crawling (2)Preprocessing @Fllterlng
: A. Data Extraction

. 2.Free stickers
- 3.Galaxy tab
4. o
(6)lIssue

Prioritizing

@Phrase Generatlon (5)Topic Grouping
i B. App Issue Generation

48



Operation: App Issues Prioritizing

App # 37
I————
Review # 2,089,737
Time Period | 10 months
Google Play Crawler
ID Title Review Date Stars \ersion
Like it cause 1t doesn’t crash on 2014-11-
1 Crash androids 09T08:55:47 ° 1500.15.13
Mobile Nawork Package.this | 2014-11-
2 Rubbish , rackage, 12T18:32:25 1 15.0.0.15.10
don't work and giving
"Connecting.. Problem".

49



Operation: App Issues Prioritizing

Based on topic modeling, each
TOPIC 1 topic is labeled with one phrase.

O

TOPIC 3 TOPIC 2 - Sentiment asi[.zect:
Sen(l) = et=t
Total score:

Phrase 1

Topic Labeling Process:

Phrase 3 Phrase 5

Rank phrases for each topic by:
- Semantic aspect:
KL-Divergence

Sem(Bi1) = Sim(Bi, 1) — k"‘j 3 Sim(6;.1)
i

Phrase 2

Phrase
7

50



Operation: App Issues Prioritizing

5.2.1.26 ‘ 5.2.1.36 522483 | 522478 | 5.3.0.2274 | 53.0.2331 | 5.3.0.2339 | 54.0.2519
‘U’argluns

- start earning - call gquality - activation code

- incoming messages sonNy xperia - animated stickers

B covwnicad stickers samsung galaxy I free calls

B -t background B voice call galaxy tab

The Themeriver of Viber.

o1



Operation: App Issues Prioritizing

Rank top reviews for each topic:

The Top Three Reviews Related to “Activation Code”

User Review [mportance
Score
Upload viber! I went. Enter a phone number. I enter. Asks
for sure your phone? It will be sent an activation code. Ok.
1 Messages are not present. He writes to activate viber here, 0.836
install it to your phone first. But I have it pumped? What to
do? Help!

[ hard reset my tab 3. Installed viber for activation code
when 1 write my phone number and press okay a white
popup written only. ERROR no description given and an 0.834
okay builton on it please help me vibers my only way to
contact my son abroad.

[ don’t know what’s wrong with Viber. Just downloaded it
nd it keeps on saying activation code sent to your device.
For almost a month, no any activation code and it’s really
pissing me off. Pls fix.

[

0.828




1000

900

Operation: Emerging Issues Detection

Privacy Related #Reviews

800

700

600

500

400 F

300

200

100 f

Number of Privacy Related Reviews in Facebook
during July 2013 to April 2015

Go gle facebook messenger users gripe and grumble in online re

All News Images Videos More

About 85,500 results (0.81 seconds)

Facebook Messenger users gripe and grumble in o
https://www.cnet.com/.../facebook-users-share-messenger-displez

Around 92 percent of more than 64000 Facebook user
a one-star rating on App Annie over the past month.

@ REVIEWS NEWS VIDEO HOWTO SMART HOME CARS DEALS DOWNLOAD

Facebook Messenger users

gripe and grumble in online
reviews

Around 92 percent of more than 64,000 Facebook users have given the
Messenger app a one-star rating on App Annie over the past month.

53



IDEA

IDentifying Emerging Issues from App Reviews

[0 Automatic tool for app review analysis
[0 Discovering emerging issues dynamically
0 Comprehensive issue interpretation

0 Visualizing issue progression over versions

Q @ \J @ @b
C’nﬁ O@ @

P =N |




Overall Framework

Version

| =»

_ o—p
Review Stream

Emerging Issues

A. Preprocessing

D. Visualization

»

B. Emerging Topic Detectior

-

8o o,

@ AOLDA

Q"

@ Anomaly
Discovery

$

2 o
® Candidate
Extraction

@ Topic
Labeling

C. Topic Interpretation

55



Online Topic Modeling

Current Version

Overview of AOLDA (Adaptively Online Latent Dirichlet Allocation). The
red rectangle with dashed dots highlights the adaptive integration of the
topics of the w previous versions.



Emerging Issue Detection

CEEYS Reviews Reviews Reviews
Version 1 Version 2 Version 3 Version 4

~ - - b - bl
()] ()] ()] ()]

Anomaly Detection - Jensen-Shannon Divergence

_ 1 1 _
Djs(opllon ) = EDKL(CbE:HﬂJ) + §DKL( wIM)

Dir(P||Q) = ZP ) log g(%

57



Experimental Result

App Name Method Phrase Sentence
(favg. reviews) Precisiony  Recallp Fivoia | Precisiong  Recally Flivbrid
OLDA | 0468 0.528 0.473 0.482 0.622 0.534
NOAA Radar |IDEA-R|[ 0.606 0.461 0.520 0.478 0.570 0.503
(523) IDEA-S| 0.250 0.530 0.340 0.417 0.547 0.473
IDEA" | 0.571 0.497 0.531 0.476 0.639 0.546
OILDA | 0441 0.462 0451 0578 0.664 0,597
Youtube IDEA-R| 0.506 0.429 0.456 0.550 0.659 0.586
(1.143) IDEA-S| 0.548 0.466 0.502 0.456 0.656 0.522
IDEA" | 0.592 0.472 0.523 0.628 0.666 0.636
OLDA | 0.157 0.305 0.166 0.313 0.550 0.375
Viber IDEA-R| 0.542 0.326 0.407 0.625 0.571 0.597
(2,141) IDEA-S| 0.500 0.342 0.406 0.500 0.518 0.509
IDEA" | 0.625 0.340 0.440 0.625 0.651 0.638
OLDA | 0.300 0.269 0.160 0.200 0.421 0.129
Clean Master |IDEA-R| 0.500 0.216 0.301 0.750 0.377 0.502
(6,332) IDEA-S| 0.067 0.289 0.366 0.500 0.398 0.443
“ | 0.667 0.318 0.431 0.667 0.434 0.526
OLDA | 0.167 0.238 0.196 0.500 0.488 0.494
Ebay IDEA-R| 0.229 0.243 0.220 0.646 0.496 0.561
(3.943) IDEA-S| 0.125 0.285 0.132 0.354 0.476 0.406
“ | 0.229 0.251] 0.227 0.646 0.527 0.580
OLDA | 0.100 0.567 0.148 0.367 0.617 0.458
SwiftKey IDEA-R| 0.333 0.611 0.376 0.417 0.733 0.515
(1,313) IDEA-S| 0.333 0.622 0.372 0.500 0.711 0.587
IDEA™ | 0.517 0.653 0.523 0.583 0.700 0.587

https://remine-lab.github.io/

58


https://remine-lab.github.io/

FREAKRE
Chinese University of Hong Koag

0( Introduction

(Al Techniques

(' Development Phase

C Operational Phase

 Analysis Phase [l

@ conclusion ) .




Software Reliability Prediction: Small
Data Modeling

Failure
Intensity

A(t)

Total Failures

t
Reliability R (t) = e JoM®dx

Present |

\
\
\
\
. . \
Objective } /- —+ — — — — - -~~~ = >
|
\

\
Present Execution Time t

\__ Additional Time —~



Analysis: Service Reliability Prediction

» Approach 1: Neighborhood-based

Unreliable

Reliability is extended to Quality-of-Service (QoS) i

 Key idea: Using past usage
experiences of similar users.

 |ssue: How to calculate user
similarity?

Service u3fr 1in Asia

Reliable ]
Web service

i‘—’ in US

Service user 2 in US

Service-Oriented System

v ?
@Q@@@

61



Analysis: Service Reliability Prediction

» Similarity Computation

 User-item matrix: M XN, each entry is the failure probability of a Web service

WSq WSo WS3 WSy WSg WS¢

a] [01 J0 0.2\ [0\ /0.3)

1, \0.J 0.9/ 1\0.5/\0.3/
u, | 0.4 0.3 0.1

u, 0.6 0.4

us | 0.5 0.3 0.3

 Pearson Correlation Coefficient (PCC)
> (Payi —Pa)(Pusi — Pa)

ielgMily,

Z pa T '_ Z pu 1 pu

el My, el

Sim(a,u) =




Analysis: Service Reliability Prediction

»\WSRec: Hybrid Prediction Approach

o Similar users + Similar Web services

Pui =A% (Pu+ Y wWa X (pai—Pa))F

acS(u)

(1 —=A) X

*UPCC

(Pi + Z Wk X (Puk — Pk))

ke S (i)

— " IPCC

63



Analysis: Service Reliability Prediction

»Performance Comparison

MAE and RMSE Comparison With Basic Approaches (A smaller MAE or RMSE value means a better performance)

Training Users = 100

Training Users = 140

Metric | Density | Methods Kesponse Time Failure Kate Response Time Failure Raie
G100  GID  G30 G10 G20 G30 G100 GI0D G300 G10 GI0 G30
UMEAN 1623 1539 1513 | 5571% 0.58% 5.53%% 1521 1439 1399 2.01% 5.007% 4977
IMEAN Q03 G901 97 2.40% 2.36% 246% 861 872 855 1.62% 1.58% 1.68%
10% UPCC 1148 877 810 4.85% 4.20% 3.86% 9a8E 782 684 411% 347% 3.28%
1P TER L35 75 2 2400 2 1650 7 3] BE5 24a A5 1,393 1 332 1A%
WSRec 758 700 672 221%  2.08% 2.08% 1.36% 1.26%

560 533

IMEAN || 866 859 861 | 236% 234%  229% || 833 837 840 | 156%  1.61%  1.62%

MAE " UPCC 904 722 626 | 440%  343%  285% || 794 626 540 | 3.93%  296%  243%
[PCC 606 610 639 | 201%  198%  j9s% || 479 500 saw | 197%  122%  128%

[ WSRec || 586 551 546 | 193%  180%  1.70% || 445 428 416 | L10%  L08%  1.07%
UMESN [ 1603 1043 1508 | o.6d0  o.oe. g TI08 1430 1567 | oa0. Lo Lo

IMEAN || 856 854 853 | 226% 229%  230% || 823 823 827 | 156%  158%  1.58%

" UPCC 915 671 572 | 425%  325%  258% || 803 576 491 | 376%  2.86%  2.06%
TP 567 T £ 1 ﬂ.":ﬁ. 1 8390 1 8L AT AT STF T 112 1 1729 1 1?%

| WSRec || 538 504 499 | 178%  169%  163% || 405 385 378 | 1.05%  1.00%  (0.98%

UMEAN || 3338 3350 3192 | 15.4/% 15.04%  1474% || 2190 3109 3069 | 14759 1242%  13.99%

IMEAN || 1441 1436 1442 | 561%  558%  585% || 1112 1140 1107 | 327%  3.26%  3.38%

10% UPCC || 2036 1455 1335 | 10.84% 751%  655% | 1585 1174 1005 | 8.86%  542%  4.96%
T 1328 1 %!1 4 ¥7a =4 "Jﬁﬁ': i T 5 Ear [51={&1 o779 £ ] L}?% o =L L] b I T

| WSRee || 1320 1247 1197 | 531% 512%  511% || 819 780 734 | 280%  261%  2.61%

UMIBEA TN 333L SN EEANI | T 1205 12605 .}lm_l & e JLB"_' 14,7 L0 12545 130

IMEAN || 1269 1252 1257 | 467%  462%  454% || 997 1001 1002 | 253%  261%  2.63%

RMSE " uPcC || 1356 1128 1019 | s07%  531%  458% || 1028 837 70 | 735%  420%  3.24%
TR 157 111 ﬁ. 11\% I I e L% 4 1724 =g Bl Til 771 R 7 [ b I 1470

| WSRec || 997 046 937 | 404%  3.83%  3.67% || 620 508 581 | 188%  1.84%  1.83%

UMEATN A33b S48 S1Lr IR L IO e 12.08 % K1 Y AU JLEEI 14 .68 s 12, .50% I N

IMEAN || 1207 1209 1203 | 421%  423%  422% || 955 954 957 | 228%  2.29%  2.28%

" urcC || 1267 1035 924 | 772%  5.09%  415% || 988 741 644 | 649%  390%  2.66%
T2 [WE=Ti] [¥]= (4] b ks [T 2 77 ar 3 TR =11 247 s s 1T 1 7 par = K

| WSRec || 921 884 860 | 3.64%  3.46%  3.37% || 564 540 528 | 1e4%  155%  152%

64



Analysis: Service Reliability Prediction

» Drawbacks of Neighborhood-based Approach

« Computational complexity O(mn +n?)
« Matrix sparsity problem
—Not easy to find similar users (or similar items)

0.5 0.4
U, 0.1
U,y 0.9
U, 0.7
us | 0.5




» Approach 2: Model-based Approach

Analysis: Service Reliability Prediction

- Each row of UT is a set of feature factors, and each column of V is a set of
linear predictors = Matrix Factorization (MF)

i,
1,
s
u,

0.32

0.23

0.30
0.47

S, S, S3 S, S5 Sg
D981 0,23 022

0,13 0,27 0, 25

0.37 0. 36

0. 69 0.22 | 0. 22 0. 34
0.15 0.31 0.33 0.73  0.35
0.15 0.26 0.28 0.60 0.31
020 024 034 X o069 037
023 050 021 0.05 0.46
UT

min L(R, U,

v

0.31

0.27

0.32
0.42

0.26
0.22
0.27
0.35

V)

0.32
0.28
0.33
0.41

0.42]

0.36
0.45

0.54]

The error between the actual
Value and the prediction

S35 ks -]
i=1 j=

\

,}k ro
Yo+ i |

Regularization terms

66



Analysis: Service Reliability Prediction

»NIMF: Neighborhood-Integrated Matrix Factorization

05|12 0.3 0.4
0.8 0.6 | 0.5
0.4 0.3 0.9
0.6 0.7
u, | 0.3 0.7 0.3

—

(")

X o2 =2 9=
[

£

(a) User-Item Matrix

L8, 5,U.V) User’s own rating  Rating due to similar users
1 T T : - | _T TT : 2
—9 Z ZIS(RM — (AU Vi (1= a) > SalU V3))

i=1 j=1 kET (i)

AU 9 AV 02
U — ||V \
Yo+ 2,

+ PCC(i. k)
S PCC(i.k)
KET (0) 67

151";; E —



Analysis: Service Reliability Prediction

»Performance Comparison

Table 2: Performance Comparison (A Smaller MAE or RMSE Value Means a Better Performance)

3 Methods Matrix Density=5% | Matrix Density=10% | Matrix Density=15% | Matrix Density=20%
Qo Alethods MAE  RMSE MAE RMSE MAE RMSE MAE RMSE
UMEAN 0.8785 1.8501 0.8783 1.8555 0.8768 1.8548 0.8747 1.8557
IMEAN 0.7015 1.5813 | 0.6918 1.5440 | 0.6867 1.5342 0.6818 1.5311
UPCC 0.6261 1.4078 | 0.5517 1.3151 0.5159 1.2680 0.4884 1.2334
Response-time | 1PCC 0.6807 1.4206 | 0.5917 1.3268 | 0.5037 1.2552 0.4459 1.2005
(0-20 ) WSRec 0.6234 1.4078 | 0.5365 1.3043 | 0.4965 1.2467 0.4407 1.2012
NMF 0.6182 1.5746 | 0.6040 1.5494 0.5990 1.5345 0.5082 1.5331
PMF 0.5678 1.4735 | 0.4996 1.2866 |  0.4720 1.2163 0.4492 1.1828

NIMF 0.5514  1.4075 | 0.4854 1.2745 | 0.4534 1.1980 | 0.4357 1.1678 |
UMEAN [ 54.0084 110.2821 | 53.6700  110.2077 | 53.8792  110.1751 | 53.7114  110.1708
IMEAN | 27.3558  66.6344 | 26.8318 64.7674 | 26.6239 64.3086 | 26.6364 64.1082
UPCC 26.1230  61.6108 | 21.2695 54.3701 | 18.7455 50.7768 | 17.5546 48.2621
Throughput IPCC 202651  64.2285 | 27.3993 60.0825 | 26.4319 57.8503 | 25.0273 55.4970
(0-1000 kbps) | VSRec 25.8755  60.8685 | 10.9754 54.8761 | 17.5543 47.8235 | 16.0762 47.8749
NMF 257520  65.8517 | 17.8411 53.0806 | 15.8939 51.7322 | 15.2516 48.6330
PMF 19.9034 _ 54.0508 | 16.1755 46.4439 | 15.0956 43.7957 | 14.6694 42 4855

NIMF [ 17.9297 51.6573 | 16.0542  45.9409 | 14.4363  43.1596 | 13.7099  41.1689 |

68



Reliability Prediction of Web Services

Approach 1: Neighborhood-based approach — to consider users
Approach 2: Model-based approach — to consider data sparsity
Approach 3: Time-aware approach — to consider temporal factor

Approach 4: Network coordinate based approach — to consider
spatial factor

Approach 5: Ranking-based approach — to consider ranking

69



Analysis:

1. Log Collection

2. Log Parsing

LLog Management

3. Feature Extraction

4, Anomaly Detection

1

2008-11-09 20:55:54 PacketResponder O for block
blk_321 terminating

2008-11-09 20:55:54 Received block blk_321 of

size 67108864 from /10.251.195.70

2008-11-09 20:55:54 PacketResponder 2 for block
blk_321 terminating

2008-11-09 20:55:54 Received block blk_321 of

size 67108864 from /10.251.126.5

2008-11-09 21:56:50 10.251.126.5:50010:Got
exception while serving blk_321to /10.251.127.243:
2008-11-10 03:58:04 Verification succeeded for
blk_321

2008-11-10 10:36:37 Deleting block blk_321 file /mnt/
hadoop/dfs/data/current/subdirl/blk_321
2008-11-10 10:36:50 Deleting block blk_321 file /mnt/
hadoop/dfs/data/current/subdir51/blk_321

Event Templates:

Event 1: PacketResponder * for block *
terminating

Event 2: Received block * of size * from *

Event 3: *:Got exception while serving *
to *

Event 4: Verification succeeded for *

Event 5: Deleting block * file *

Log Events:

|
Log 2—> Event 2 }
Log 4— Event 2 :

}

| Log 1—> Event 1
| Log3—> Event 1
I Log 5— Event 3 Log 6—> Event 4 }
| Log 7> Event 5 Log 8— Event S '

| O, At At At -,
L

e e

Fixed windows

- -

AT
L,

Y

I

| EventCountMatrix
; 1020101101
: 1010101101
I

I

I

I

1010102101

Sliding windows

1010100101
CI

!lllﬂ Session ID!

Session windows

JW,MMM

|H|1 I Ml’\ ‘,“]

Log Analysis Framework

70



Analysis: Log Management

Raw Log Messages

1 2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user /root/randtxtd/
_temporary/_task_200811101024_0010_m_000011_0/part-
00011.blk_904791815409399662

2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010

2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010

2008-11-11 03:41:48 PacketResponder 0 for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.250.18.114

6 2008-11-11 03:41:48 PacketResponder 1 for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.251.43.210

8 2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.251.43.210:50010 is added to blk_904791815409399662 size 67108864

9 2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864

10 2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

,} Log Parsing +

[ - S - I -]

-1

Log Events Structured Logs
Eventl | BLOCK* NameSystem.allocateBlock: * 1 2008-11-11 03:40:58 Eventl
- . e 2 | 2008-11-1103:40:59 Event2
Event2 | Receiving block * src: * dest: 3 2008-11-11 03:41:01 Event2
Event3 | PacketResponder * for block * terminating 4 2008-11-11 03:41:48 Event3
5 2008-11-11 03:41:48 Event4
Eventd Received block * of size * from * 6 2008-11-11 03:41:48 Event3
Event5 | BLOCK* NameSystem.addStoredBlock: 7 2008-11-11 03:41:48 Eventd
blockMap updated: * is added to * size * 8 2008-11-11 03:41:48 Event5
Event6 | Verification succeeded for * 9 2008-11-11 03:41:48 Event>
10 2008-11-11 08:30:54 Event6

Log Parsing



Analysis: Log Management

» We design and implement a parallel log parser (namely POP) on top of Spark.
» It can process 200 million lines of raw log messages within 7 min while keeping

high accuracy.

Distributed File System

Spark
Cluster

S pa rk
Recurswely Merge Groups
Partition by by Log Event
Token Position
(Step 3) (Step 5)

———————————————————————————————————— 12



Analysis: Log Management

Anomalies

Normal
instances

Existing anomaly detection methods: SVM (left) and PCA (right)
73



Analysis: Log Management

...........................

Fully-Connected

Backward
Forward Concatenation
Rare Event Vectors
Embedded Log o
Sequence: /I\ T T :
Log Embedding _ fierc Rare :
Log T T T T : Event1 Event2

Sequence: Event 3 Event5 Event22 Event1l

Our method: Deep Log Embedding based Anomaly Detection (D-Lead)
74



Analysis: Log Management

loghub

A collection of system log datasets for massive log analysis

Log PA I log-analysis logs console-log log-parsing unstructured-logs

*16 ¥3 Updated 23 days ago
(Log Powered by Al)
LogAdvisor
LOG

Learning to Log: A framework for determining optimal logging points

machine-learning logging code-analysis
E - E ®cx %1 Y2 Updated onMay 1 AI
logparser
logparser: A toolkit for automated log parsing
E log-analysis log log-parser log-mining log-parsing
@pPython W25 Y14 s MIT  Updated on Jul 27
loglizer

loglizer: A log analysis toolkit for automated anomaly detection

https : //g ith u b . CO m/I Og pai log-analysis log-management anomaly-detection unstructured-logs

@rpython W33 ¥17 s MIT  Updated on Sep 21



https://github.com/logpai

Defect Prediction

« Software defect prediction: build classifiers to predict code
areas that potentially contain defects, based on code features.

Training instances -

—

Training

New instance

d More effective feature extraction

_ ) Prediction
Deep Learning (Buggy or Clean)

76



Defect Prediction

d The overall workflow of proposed DP-CNN

{ Source Files ':>
T select informative
nodes

for | add()jremove(]e = =

1. Parsing source code
and extracting token
vectors

Abstract Syntax

Tree (AST)
o | | l
| [ [
= [z [z [
encode
| AST nodes  [index
for 1
remove() 2
add() 3
L -

2. Encoding token

vectors

Hgoer

Inpuk Guipul

= e

!

buggy or clean

3. Generating 4. Predicting
features via CNN defects

77



Defect Prediction

 Performance on 8 open source projects

Project || Traditional || DBN | DBN+ | CNN | DP-CNN
camel 0.329 0.335 | 0.375 || 0.505 0.508
jEdit 0.573 0.480 | 0.549 || 0.631 0.580
lucene 0.618 0.758 | 0.761 || 0.761 0.761
xalan 0.627 0.681 | 0.681 || 0.676 0.696
Xerces 0.273 0.261 | 0.276 | 0.311 0.374

synapse 0.500 0.503 | 0.486 | 0.512 0.556

poi 0.748 0.780 | 0.782 || 0.778 0.784

eclipse 0.273 0.290 | 0.349 || 0.337 0.367

Average 0.493 0.511 | 0.532 || 0.564 0.578

e

78



FREY XY
Chiinese University of Fong Roung

.C Introduction

(" Al Techniques

(' Development Phase

C Operational Phase

N N S O

(Analysis Phase

. Conclusion




Conclusion

1 Before Al becomes conscientious, its intelligence is still
artificial.

1 Software is eating the world, and Al is eating the software.
---Nvidia CEO Jensen Huang

1 Al may replace many people’s job, but it will certainly
enhance software engineers to do a better job.

 Our goal is to employ Al to provide more efficient and
effective software development, operation, and analysis.

 The current achievement is just a small step ahead in a
largely unexplored area in existing software engineering
research paradigms.

80



Thank Youl!



